04.03.2018
Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой.
Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды.
Впервые описал жидкое содержимое клетки и назвал его протоплазмой (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции.
Кроме того, они отличаются между собой строением и химическим составом.
Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии).
Вакуоль (одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль.
Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты.
Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы.
В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий.
Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл.
Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 — 1883 г.) принадлежат немецким ученым – естествоиспытателю А.
Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты.
Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой.
Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза.
Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа.
Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм).
Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений).
Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена).
Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов.
Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты.
Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета.
Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр.
Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла.
Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.).
Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них.
Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения — матриксом.
Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму.
Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки.
Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию.
Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.).
Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками.
Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу.
Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом.
Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул.
Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы.
Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании.
Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы.
Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети.
Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы).
Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот.
Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К.
Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт.
Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны.
По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом.
В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС.
Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.
Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.).
В молодых клетках ядро размещено ближе к центру, в старых — смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки.
Химический состав ядра представлен белками и нуклеиновыми кислотами.
Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств.
Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом.
Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.
Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы — ядрышек, погруженных в бесцветную, однородную, гелеобразную массу — ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек — синтез РНК и формирование рибосом.
Источник: https://agrostory.com/info-centre/knowledge-lab/organoidy-rastitelnoy-kletki-i-ikh-funktsii/
Строение клетки. Клеточные органоиды — урок. Биология, Общие биологические закономерности (9–11 класс)
Наука, изучающая строение и функции клеток, называется цитология.
Клетка — элементарная структурная и функциональная единица живого.
Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы.
Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки — органеллы (органоиды).
Клеточное ядро — это важнейшая часть клетки. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры, они нужны для того, чтобы различные вещества могли попадать из цитоплазмы в ядро и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы, или ядерного сока. В ядерном соке расположены хроматин и ядрышко.
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами.
Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.
Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления — разрушаются. Функция ядрышек — синтез РНК и белков, из которых формируются особые органоиды — рибосомы.
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети. Реже они свободно взвешены в цитоплазме клетки.
Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.
Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, «цистернами», и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи. Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы — пищеварительные органеллы клетки.Лизосомы представляют собой пищеварительные ферменты, «упаковываются» в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.
Митохондрии — энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.
Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы — кристы.
В мембрану крист встроены ферменты, синтезирующие за счёт энергии питательных веществ, поглощённых клеткой, молекулы аденозинтрифосфата (АТФ). АТФ — это универсальный источник энергии для всех процессов, происходящих в клетке.Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например, в сперматозоидах может быть всего одна митохондрия. Зато в клетках тканей, где велики энергетические затраты (в клетках летательных мышц у птиц, в клетках печени), этих органоидов бывает до нескольких тысяч. Митохондрии имеют собственную ДНК и могут самостоятельно размножаться (перед делением клетки число митохондрий в ней возрастает так, чтобы их хватило на две клетки).
Митохондрии содержатся во всех эукариотических клетках, а вот в прокариотических клетках их нет.
Этот факт, а также наличие в митохондриях ДНК позволило учёным выдвинуть гипотезу о том, что предки митохондрий когда-то были свободноживущими существами, напоминающими бактерии.
Со временем они поселились в клетках других организмов, возможно, паразитируя в них. А затем за многие миллионы лет превратились в важнейшие органоиды, без которых ни одна эукариотическая клетка не может существовать.
Чтобы клетка представляла собой единую систему, необходимо, чтобы все её части (цитоплазма, ядро, органоиды) удерживались вместе.
Для этого в процессе эволюции развилась плазматическая мембрана, которая, окружая каждую клетку, отделяет её от внешней среды.
Наружная мембрана защищает внутреннее содержимое клетки — цитоплазму и ядро — от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.
Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие — пронизывают оба слоя липидов насквозь.
Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из неё могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ — белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:
- В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окружённая мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
- Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твёрдые частицы, а капельки жидкости с растворёнными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.
Когда в клетку путём фагоцитоза или пиноцитоза попадают различные питательные вещества, их необходимо переварить (т. е. белки должны разрушиться до отдельных аминокислот, полисахариды — до молекул глюкозы или фруктозы, липиды — до глицерина и жирных кислот). Чтобы внутриклеточное переваривание стало возможным, фагоцитарный или пиноцитарный пузырёк должен слиться с лизосомой.
Источники:
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.
Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.
https://infourok.ru/material.html?mid=30020
http://mognovse.ru/mogno/669/668818/668818_html_m66d1dbb3.jpg
Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/kletochnaia-teoriia-organoidy-kletki-ikh-funktcii-16038/re-e082c163-191c-4625-8cff-ef6225d2e0dd
Сравнение строения животной и растительной клетки. Основные сходства и различия
Клетка – это структурная и функциональная единица живого организма, которая несет генетическую информацию, обеспечивает обменные процессы, способна к регенерации и самовоспроизведению.
Есть одноклеточные особи и развитые многоклеточные животные и растения. Их жизнедеятельность обеспечивается работой органов, которые построены из разных тканей. Ткань, в свою очередь, представлена совокупностью клеток схожих по строению и выполняемым функциям.
Клетки разных организмов имеют свои характерные свойства и строение, но есть общие составляющие присущие всем клеткам: и растительным, и животным.
Органеллы свойственные всем типам клеток
Строение растительной и животной клетки
Ядро – один из важных компонентов клетки, содержит генетическую информацию и обеспечивает передачу ее потомкам. Окружено двойной мембраной, что изолирует его от цитоплазмы.
Цитоплазма – вязкая прозрачная среда, заполняющая клетку. В цитоплазме размещены все органоиды. Цитоплазма состоит из системы микротрубочек, которая обеспечивает четкое перемещение всех органелл. А также контролирует транспорт синтезированных веществ.
Клеточная мембрана – оболочка, которая отделяет клетку от внешней среды, обеспечивает транспорт веществ в клетку и выведение продуктов синтеза или жизнедеятельности.
Эндоплазматическая сеть – мембранная органелла, состоит из цистерн и канальцев, на поверхности которых происходит синтез рибосом (гранулярная ЭПС). Места, где нет рибосом, образуют гладкий эндоплазматический ретикулум. Гранулярная и агранулярная сеть не отграничены, а переходят друг в друга и соединяются с оболочкой ядра.
Комплекс Гольджи – стопка цистерн, сплюснутых в центре и расширенных на периферии. Предназначен для завершения синтеза белков и дальнейшего транспорта их из клетки, вместе с ЭПС образует лизосомы.
Митохондрии – двухмембранные органоиды, внутренняя мембрана формирует выступы внутрь клетки – кристы. Отвечают за синтез АТФ, энергетический обмен. Выполняет дыхательную функцию (поглощая кислород и выделяя СО2).
Рибосомы – отвечают за синтез белка, в их структуре выделяют малую и большую субъединицы.
Лизосомы – осуществляют внутриклеточное переваривание, за счет содержания гидролитических ферментов. Расщепляют захваченные чужеродные вещества.
Как в растительных, так и животных клетках есть, помимо органелл, непостоянные структуры — включения. Они появляются при повышении обменных процессов в клетке. Они выполняют питательную функцию и содержат:
- Зерна крахмала в растениях, и гликоген — в животных;
- белки;
- липиды – высокоэнергетические соединения, обладают большей ценностью, чем углеводы и белки.
Есть включения, не играющие роли в энергетическом обмене, они содержат продукты жизнедеятельности клетки. В железистых клетках животных включения накапливают секрет.
Органеллы свойственные только растительной клетке
Органеллы растительной клетки
Клетки животных в отличие от клеток растений не содержат вакуолей, пластид, клеточной стенки.
Клеточная стенка формируется из клеточной пластинки, образуя первичную и вторичную клеточную оболочки.
Первичная клеточная стенка встречается в недифференцированных клетках. В ходе созревания между мембраной и первичной клеточной стенкой закладывается вторичная оболочка. По своему строению она сходна с первичной, только имеет больше целлюлозы и меньшее количество воды.
Вторичная клеточная стенка оснащена множеством пор. Пора – это место, где между первичной оболочкой и мембраной отсутствует вторичная стенка. Поры размещены попарно в смежных клетках. Размещенные рядом клетки связываются друг с другом плазмодесмой – это канал, представляющий собой тяж цитоплазмы, выстланный плазмолеммой. Через него клетки обмениваются синтезированными продуктами.
Функции клеточной стенки:
- Поддержание тургора клетки.
- Придает форму клеткам, выполняя роль скелета.
- Накапливает питательные продукты.
- Защищает от внешнего воздействия.
Вакуоли – органеллы, наполненные клеточным соком, участвуют в переваривании органических веществ (сходны с лизосомами животной клетки). Образуются при помощи совместной работы ЭПС и комплекса Гольджи. Сначала формируется и функционирует несколько вакуолей, во время старения клетки они сливаются в одну центральную вакуоль.
Пластиды – автономные двухмембранные органеллы, внутренняя оболочка имеет выросты – ламеллы. Все пластиды делят на три типа:
- Лейкопласты – безпигментные образования, способны запасать крахмал, белки, липиды;
- хлоропласты – зеленные пластиды, содержат пигмент хлорофилл, способны к фотосинтезу;
- хромопласты – кристаллы оранжевого цвета, из-за наличия пигмента каротина.
Органеллы свойственные только животной клетке
Органеллы животной клетки
Отличие растительной клетки от животной заключается в отсутствии в ней центриоли, трехслойной мембраны.
Центриоли – парные органеллы, расположены вблизи ядра. Принимают участие в формировании веретена деления и способствуют равномерному расхождению хромосом к разным полюсам клетки.
Плазматическая мембрана — для клеток животных характерна трехслойная, прочная мембрана, построена из липидов протеинов.
Сравнительная характеристика растительной и животной клетки
Свойства | Растительная клетка | Животная клетка |
Строение органелл | Мембранное | |
Ядро | Сформированное, с набором хромосом | |
Деление | Размножение соматических клеток, путем митоза | |
Органоиды | Сходный набор органелл | |
Клеточная стенка | + | — |
Пластиды | + | — |
Центриоли | — | + |
Тип питания | Автотрофный | Гетеротрофный |
Энергетический синтез | С помощью митохондрий и хлоропластов | Только с помощью митохондрий |
Метаболизм | Преимущество анаболизма над катоболизмом | Катаболизм превышает синтез веществ |
Включения | Питательные вещества (крахмал), соли | Гликоген, белки, липиды, углеводы, соли |
Реснички | Крайне редко | Есть |
- Растительные клетки благодаря хлоропластам осуществляют процессы фотосинтеза – преобразуют энергию солнца в органические вещества, животные клетки на это не способны.
- Митотическое деление растения идет преимущественно в меристеме, характеризуется наличием дополнительного этапа – препрофазы, в организме животных митоз присущ всем клеткам.
- Размеры отдельных растительных клеток (около 50мкм) превышают размеры животных клеток (примерно 20мкм).
- Взаимосвязь между клетками растений осуществляется за счет плазмодесмы, животных – при помощи десмосом.
- Вакуоли растительной клетки занимают большую часть ее объёма, в животных – это мелкие образования в небольших количествах.
- Клеточная стенка растений построена из целлюлозы и пектина, у животных мембрана состоит из фосфолипидов.
- Растения не способны активно передвигаться, поэтому приспособились автотрофному способу питания, синтезируя самостоятельно все необходимые питательные вещества из неорганических соединений.
- Животные – гетеротрофы и используют экзогенные органические вещества.
Сходство в структуре и функциональных возможностях растительных и животных клеток указывает на единство их происхождения и принадлежности к эукариотам. Их отличительные черты обусловлены различным способом жизни и питания.
Оцените, пожалуйста, статью. Мы старались:) (30
Источник: https://animals-world.ru/otlichie-zhivotnoj-kletki-ot-rastitelnoj/
Строение животной и растительной клетки
Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.
Строение животной (слева) и растительной (справа) клеток
Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10—20% ее общего объема.
Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.
Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому.
Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы.
Строение клетки по данным электронной микроскопии
Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100—120 Å. Эти образования названы эндоплазматическим комплексом.
В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках животных и низших растений — центросома, животных — лизосомы, у растений — пластиды.
Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.
Центриоли (клеточный центр) состоит из двух компонентов: триоли и центросферы — особым образом дифференцированного участка цитоплазмы. Центриоли состоят из двух мелких округлых колец. В электронном микроскопе видно, что эти тельца представляют собой систему строго ориентированных трубочек.
Митохондрии в клетках бывают разной формы: палочковидные, нулообразные и др. Полагают, что форма их может изменяться зависимости от функционального состояния клетки. Размеры митохондрии варьируют в значительных пределах: от 0,2 до 2—7 мк. клетках разных тканей они располагаются или равномерно по цитоплазме, или с большей концентрацией в определенных участках.
Установлено, что митохондрии принимают участие в окислительных процессах обмена веществ клетки. Митохондрии состоят белков, липидов и нуклеиновых кислот. В них найден ряд ферментов, участвующих в аэробном окислении, а также связанных реакцией фосфорилирования.
Полагают, что в митохондриях происходят все реакции цикла Кребса: большая часть освобождаются при этом энергии расходуется на работу клетки.
Строение митохондрий оказалось сложным. Поданным электрон-микроскопических исследований, они представляют собой тельца, суженные гидрофильным золем заключенные в избирательно проницаемую оболочку — мембрану, толщина которой около 80 Å. Митохондрии имеют слоистую структуру в виде системы утренних гребней-кристаллов, толщина которых 180—200 Å.
Они отходят от внутренней поверхности мембран, образуя кольцобразные диафрагмы. Предполагается, что митохондрии размножаются путем деления. При делении клетки распределение их по крайним клеткам не подчиняется строгой закономерности, так как % по-видимому, могут быстро размножаться до необходимого клетки количества.
По форме, величине и роли в биохимических процессах митохондрии являются характерными для каждого типа ни и вида организма.
При биохимических исследованиях цитоплазмы в ней найдены микросомы, которые представляют собой фрагменты мембран с структурой эндоплазматической сети.
В значительном количестве в цитоплазме находятся рибосомы размерам они варьируют от 150 до 350 Å и в световом микроскопе невидимы.
Особенностью их является высокое содержание РНК и белков: около 50% всей клеточной РНК находится в рибосомах, что указывает на большое значение последних в деятельности клетки. Установлено, что рибосомы участвуют в синтезе клеточных белков под контролем ядра.
Репродукция самих рибосом также контролируется ядром; в отсутствии ядра они теряют способность синтезировать цитоплазматические белки и исчезают.
В цитоплазме имеется также аппарат Гольджи. Он представляет систему гладких мембран и канальцев, располагающихся вокруг ядра или полярно. Предполагают, что этот аппарат обеспечивает выделительную функцию клетки. Тонкое строение его остается еще не выясненным.
Органоидами цитоплазмы являются также лизосомы — литические тела, выполняющие функцию пищеварения внутри клетки. Они открыты пока только в животных клетках.
Лизосомы содержат активный сок — ряд ферментов, способных расщеплять белки, нуклеиновые кислоты и полисахариды, поступающие в клетку.
В случае если мембрана лизосомы разрывается и ферменты переходят в цитоплазму, то они «переваривают» другие элементы, цитоплазмы и приводят к растворению клетки — «самопоеданию».
Для цитоплазмы растительных клеток характерно присутствие пластид, которые осуществляют фотосинтез, синтез крахмала и пигментов, а также белков, липидов и нуклеиновых кислот. По окраске и выполняемой функции пластиды могут быть разделены на три группы: лейкопласты, хлоропласты и хромопласты.
Лейкопласты — бесцветные пластиды, участвующие в синтезе крахмала из сахаров. Хлоропласты представляют белковые тела более плотной консистенции, чем цитоплазма; наряду с белками они содержат много липидов. Белковое тело (строма) хлоропластов несет пигменты, в основном — хлорофилл, чем и объясняется их зеленая окраска, хлоропласты осуществляют фотосинтез.
Хромопласты содержат пигменты — каротиноиды (каротин и ксантофилл).
Пластиды размножаются путем прямого деления и, по-видимому, не возникают в клетке заново. До сих пор нам не известен принцип их распределения по дочерним клеткам при делении.
Возможно, что строгого механизма, обеспечивающего равное распределение, не существует, так как необходимое число их может быстро восстанавливаться.
При бесполом и половом размножении растений через материнскую цитоплазму могут наследоваться признаки, определяемые свойствами пластид.
Здесь мы не будем останавливаться на особенностях изменений отдельных элементов клетки в связи с выполняемыми ими физиологическими функциями, так как это входит в область изучения цитологии, цитохимии, цитофизики и цитофизиологии.
Однако следует отметить, что в последнее время исследователи приходят к очень важному выводу в отношении химической характеристики органелл цитоплазмы: ряд из них, такие как митохондрии, пластиды и даже центриоли, имеет собственную ДНК.
Какова роль ДНК и каково состояние, в котором она находится, остается пока неясным.
Мы познакомились с общей структурой клетки лишь для того, чтобы в последующем оценить роль отдельных ее элементов в обеспечении материальной преемственности между поколениями, т. е. в наследственности, ибо все структурные элементы клетки принимают участие в ее сохранении.
Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава.
Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.
Источник: https://www.activestudy.info/stroenie-kletki/
Органоиды клетки и их функции
Содержание:
Что такое органоиды клетки
Органоиды клетки, они же органеллы, представляют собой специализированные структуры собственно клетки, отвечающие за различные важные и жизненно необходимые функции. Почему же все-таки «органоиды»? Просто тут эти компоненты клетки сопоставляются с органами многоклеточного организма.
Какие органоиды входят в состав клетки
Также порой под органоидами понимается исключительно лишь постоянные структуры клетки, которые находятся в ее цитоплазме.
По этой же причине ядро клетки и ее ядрышко не называют органоидами, равно как и не являются органоидами клеточная мембрана, реснички и жгутики.
А вот к органоидам, входящим в состав клетки относятся: хромосомы, митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, микротрубочки, микрофиламенты, лизосомы. По сути это и есть основные органоиды клетки.
Если речь идет о животных клетках, то в число их органоидов также входят центриоли и микрофибриллы. А вот в число органоидов растительной клетки еще входят только свойственные растениям пластиды. В целом состав органоидов в клетках может существенно отличатся в зависимости от вида самой клетки.
Рисунок строения клетки, включая ее органоиды.
Двумембраные органоиды клетки
Также в биологии существует такое явление как двумембраные органоиды клетки, к ним относятся митохондрии и пластиды. Ниже мы опишем свойственные им функции, впрочем, как всех других основных органоидов.
Функции органоидов клетки
А теперь коротко опишем основные функции органоидов животной клетки. Итак:
- Плазматическая мембрана – тонкая пленка вокруг клетки состоящая из липидов и белков. Очень важный органоид, который обеспечивает транспортировку в клетку воды, минеральных и органических веществ, удаляет вредные продукты жизнедеятельности и защищает клетку.
- Цитоплазма – внутренняя полужидкая среда клетки. Обеспечивает связь между ядром и органоидами.
- Эндоплазматическая сеть – она же сеть каналов в цитоплазме. Принимает активное участие в синтезе белков, углеводов и липидов, занимается транспортировкой полезных веществ.
- Митохондрии – органоиды, в которых окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. По сути митохондрии это органоид клетки, синтезирующий энергию.
- Пластиды (хлоропласты, лейкопласты, хромопласты) – как мы упоминали выше, встречаются исключительно у растительных клеток, в целом их наличие является главной особенностью растительного организма. Играют очень важную функцию, например, хлоропласты, содержащие зеленый пигмент хлорофилл, у растения отвечают за явление фотосинтеза.
- Комплекс Гольджи – система полостей, отграниченных от цитоплазмы мембраной. Осуществляют синтез жиров и углеводов на мембране.
- Лизосомы — тельца, отделенные от цитоплазмы мембраной. Имеющиеся в них особые ферменты ускоряют реакцию расщепления сложных молекул. Также лизосома является органоидом, обеспечивающим сборку белка в клетках.
- Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ; они регулируют содержание воды в клетке.
В целом все органоиды являются важными, ведь они регулируют жизнедеятельность клетки.
Основные органоиды клетки, видео
- И в завершение тематическое видео про органоиды клетки.
- Эта статья доступна на английском – Cell Organelles and Their Functions.
Источник: https://www.poznavayka.org/biologiya/organoidyi-kletki-i-ih-funktsii/
Органоиды цитоплазмы, их структура и функции. Митохондрии, пластиды
15 мин.
III. Актуализация знаний. Постановка цели урока. Мотивация изучения материала. По электронному учебнику учитель объясняет новую тему.
Строение растительной клетки : целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.
Наличие пластид — главная особенность растительной клетки.
- Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.
- Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.
- Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.
Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.
Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.
Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма.
Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды.
Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .
Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.
Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.
Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.
Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.
Строение животной клетки
Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.
Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.
Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.
- Органоиды клетки :
- 1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;
- 2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;
3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;
4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;
5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.
Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.
Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму.
Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам.
Ядро — место синтеза ДНК, иРНК, рРНК.
Основные типы пластид Сообщение (слайд №10) учащегося о взаимных переходах пластид друг в друга с демонстрацией результатов опыта, выполненного во внеурочное время (зеленый клубень картофеля, выдержанный на свету) и объяснение данного явления: лейкопласты на свету ––> хлоропласты осенью ––> хромопласты
Задание:Поясните, почему органоиды называют специализированными структурами клетки?
Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.
- Задание.
- Начертите в тетради таблицу В первую колонку запишите составные части клетки и органоиды.
- Знаком «+» отметьте их наличие в клетке растений и клетке животных.
- Сделайте вывод: о чем говорит сходство и различие в строении.
2. Пластиды: строение, функции, роль в процессах жизнедеятельности растительной клетки. (Рассказ учителя и выполнение лабораторной работы «Строение растительной клетки» на примере листа элодеи) по инструктивной карточке.) Сравнение строения клетки растений и клетки животных (на основе анализа данных светового и электронного микроскопа)
Источник: https://infourok.ru/organoidi-citoplazmi-ih-struktura-i-funkcii-mitohondrii-plastidi-2621115.html
Органоиды клетки — Биология Егэ
- ТЕСТ «Строение клетки»
- 1 Система плоских цистерн с отходящими от них трубочками, заканчивающимися пузырьками, — это
1) ядро2) митохондрия3) клеточный центр
4) комплекс Гольджи
- 2. Строение и функции плазматической мембраны обусловлены входящими в её состав молекулами
1) гликогена и крахмала2) ДНК и АТФ3) белков и липидов
4) клетчатки и глюкозы
- 3.Главным компонентом ядра являются
- 1) рибосомы2) хромосомы3) митохондрии4) хлоропласты
- 4. К одномембранным органоидам клетки относят
1) клеточный центр2) митохондрии3) хлоропласты
4) лизосомы
- 5.В состав рибосомы входят
1) многочисленные кристы2) системы гран3) цистерны и полости
4) большая и малая частицы
- 6. В какой части клетки располагаются органоиды и ядро
1) в вакуолях2) в цитоплазме3) в эндоплазматической сети
4) в комплексе Гольджи
- 7.Хлоропласт можно узнать по наличию в нём
1) крист2) полостей и цистерн3) гран
4) ядрышек
- 8. Клеточный органоид, содержащий молекулу ДНК
1) рибосома2) хлоропласт3) клеточный центр
4) комплекс Гольджи
- 9. Большую часть зрелой растительной клетки занимают
1) вакуоли2) рибосомы3) хлоропласты
4) митохондрии
- 10. Какие органоиды клетки содержат молекулы хлорофилла
1)рибосомы2) пластиды3) митохондрии
4) комплекс Гольджи
- 11. Органические вещества в клетке перемещаются к органоидам по
1) системе вакуолей2) лизосомам3) эндоплазматической сети
4) митохондриям
- 12. Сходство эндоплазматической сети и комплекса Гольджи состоит в том, что в их полостях и канальцах
1) происходит синтез молекул белка2) накапливаются синтезированные клеткой вещества3) окисляются синтезированные клеткой вещества
4) осуществляется подготовительная стадия энергетического обмена
- 13. Гликокаликс в клетке образован
1) липидами и нуклеотидами2) жирами и АТФ3) углеводами и белками
4) нуклеиновыми кислотами
- 14. Какой клеточный органоид содержит ДНК
1) вакуоль2) рибосома3) хлоропласт
4) лизосома
- 15. Лизосомы в клетке образуются в
1) эндоплазматической сети2) митохондриях3) клеточном центре
4) комплексе Гольджи
- 16. Плазматическая мембрана животной клетки в отличие от клеточной стенки растений
1) состоит из клетчатки2) состоит из белков и липидов3) прочная, неэластичная
4) проницаема для всех веществ
- 17. Эндоплазматическая сеть образована выростами:
1) цитоплазматической мембраны2) цитоплазмы3) ядерной мембраны
4) мембраны митохондрий
- 18. Все органоиды клетки расположены в
1) цитоплазме2) комплексе Гольджи3) ядре
4) эндоплазматической сети
- 19.Комплекс Гольджи в клетке можно распознать по наличию в нем
1) полостей и цистерн с пузырьками на концах2) разветвленной системы канальцев3) крист на внутренней мембране
4) двух мембран, окружающих множество гран
- 20. Эндоплазматическую сеть можно узнать в клетке по
1) системе связанных между собой полостей с пузырьками на концах2) множеству расположенных в ней гран3) системе связанных между собой разветвленных канальцев
4) многочисленным кристам на внутренней мембране
- 21. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами
1) гликогена и крахмала2) ДНК и АТФ3) белков и липидов
4) клетчатки и глюкозы.
- 22. Митохондрии, как и лизосомы, отсутствуют в клетках
1) бактерий2) грибов3) животных
4) растений
- 23. Комплекс Гольджи наиболее развит в клетках
1) мышечной ткани2) нервных3) секреторных желез
4) кроветворных
- 24.Органоиды, состоящие из особого вида рибонуклеиновых кислот, расположенные на гранулярной эндоплазматической сети и участвующие в биосинтезе белка, это —
1) лизосомы2) митохондрии3) рибосомы
4) хлоропласты
- 25. В отличие от хлоропластов митохондрии
1) имеют двойную мембрану2) имеют собственную ДНК3) имеют граны
4) имеют кристы
- 26.К немембранным компонентам клетки относится
1) ядро2) аппарат Гольджи3) ЭПС
4) Рибосома
- 27. Кристы имеются в
1) вакуолях2) пластидах3) хромосомах
4) митохондриях
- 28. На полисомах клетки идет
1) фотосинтез2) синтез белков3) синтез АТФ
4) репликация ДНК
- 29. Кристы и тилакоиды – это
1) наружные мембраны митохондрий и хлоропластов2) внутренние мембранные структуры митохондрий и хлоропластов3) немембранные органоиды клетки
4) мембраны эндоплазматической сети
- 30. Рибосомы в клетке не принимают участия в
1) биосинтезе белка2) размещении матрицы иРНК3) сборке полипептидной цепи
4) синтезе молекул АТФ
Источник: https://www.sites.google.com/site/biologiaege/organoidy-kletki