Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Что такое умножение? Это – умное сложение.

Ой, привет, ребята!

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Вы, конечно, уже поняли, что сегодня мы с вами будем говорить об умножении. Мы повторим свойства умножения. А ещё мы будем умножать числа на один и на нуль.

Посмотрите на эти кубики.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Как подсчитать, сколько их? Семь кубиков, ещё семь, и ещё семь. А всего двадцать один. Сейчас количество кубиков я находила действием сложения.

Но ведь вы помните, что сложение одинаковых чисел можно заменить умножением, где первый множитель показывает, какие числа складываем, а второй множитель показывает их количество.

Мы по семь взяли три раза, то есть семь умножили на три.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Но теперь посмотрите.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Наша фигура перевернулась, и для того, чтобы узнать, сколько всего кубиков, мы будем брать не по семь три раза, а три семь раз. То есть, три умножать на семь. Ответ при этом не изменился.

  • 7 · 3 = 21  
  • 3 · 7 = 21
  • Это и есть переместительное свойство умножения, которое гласит: От перестановки множителей произведение не изменяется.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

А теперь я предлагаю вам решить вот такой пример:

79 · 2 · 5 = 79 · (2 · 5) = 790

Конечно, те, кто хорошо владеет навыком устного счёта, смогут решить устно этот пример. Но ведь можно сделать так, что его сможет решить и третьеклассник, а может быть даже второклассник. И поможет нам в этом сочетательное свойство умножения. В нём говорится, что два соседних множителя можно заменить их произведением.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Вот мы это и сделаем. Дважды пять – десять. И семьдесят девять умножить на десять – семьсот девяносто.

А если, например, надо было бы тридцать шесть умножить на двадцать пять и на четыре? Тут уж пришлось бы повозиться. Вряд ли вы устно смогли бы решить этот пример, если бы не сочетательное свойство умножения. Мы просто перемножим числа двадцать пять и четыре. Получится сто. А потом тридцать шесть умножаем на сто, получается три тысячи шестьсот.

Ну а теперь попробуем умножить сумму чисел семь, три, два и пять на восемь.

(7 + 3 + 2 + 5) · 8 = 7 · 8 + 3 · 8 + 2 · 8 + 5 · 8 = 56 + 24 + 16 + 40 = 136

Складываем числа в скобках, получается семнадцать. Семнадцать надо умножить на восемь. Стоп! Здесь можно воспользоваться распределительным свойством умножения: при умножении суммы на число, можно каждое слагаемое умножить на это число и полученные результаты сложить.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Воспользуемся этим свойством. Семью восемь – пятьдесят шесть, трижды восемь – двадцать четыре, дважды восемь – шестнадцать, и пятью восемь – сорок. Складываю эти числа. Получилось сто тридцать шесть.

Этим свойством удобно пользоваться при умножении многозначного числа на однозначное. Например, захотела я умножить пятьсот девяносто семь на шесть.

597 · 6 = (500 + 90 + 7) · 6 = 500 · 6 + 90 · 6 + 7 · 6 = 3000 + 540 + 42 = 3582

Раскладываю трёхзначное число на сумму разрядных слагаемых, умножаю на шесть каждое из них, складываю результаты.

Ура! Пример решён! И без особых трудностей.

Видите, ребята, насколько легче и быстрее можно выполнять умножение, если знаешь его свойства и умеешь ими пользоваться.

А теперь давайте вспомним приёмы умножения на один и на нуль.

Что происходит с числом, если его умножают на один? Это значит, что число берут один раз. И в результате получается то же самое число.

Семью один – семь, тридцать четыре умножить на один – тридцать четыре, один умножить на семь миллионов восемьсот сорок две тысячи триста пятнадцать – получаются те же семь миллионов восемьсот сорок две тысячи триста пятнадцать. Даже если дробное число умножить на один, получится то же самое дробное число.

Ну а что происходит с числом, если его умножить на нуль? Какое бы число мы ни умножили на нуль, в ответе получится нуль.

Вот, ребята, мы с вами и вспомнили три свойства умножения и приёмы умножения на один и нуль. И перед тем, как попрощаться, хочу ещё раз напомнить вам, о чём мы сегодня говорили.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

  1. * От перестановки множителей произведение не изменяется.
  2. * Два соседних множителя можно заменить их произведением.
  3. * При умножении суммы на число, можно каждое слагаемое умножить на это число и полученные результаты сложить.
  4. * Если один из множителей равен одному, то произведение равно другому множителю.
  5. * Если один из множителей равен нулю, то произведение равно нулю.

Источник: https://videouroki.net/video/20-umnozhenie-i-ego-svojstva-umnozhenie-na-0-i-1.html

Рассмотрим пример умножения на ноль целого числа. Сколько будет, если 2 (два) умножить на 0 (ноль)

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Согласно общепринятому определению, ноль — это число, отделяющее положительные числа от отрицательных на числовой прямой. Ноль — это самое проблематичное место в математике, которое не подчиняется логике, а все математические действия с нулём основаны не на логике, а на общепринятых определениях.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Ноль является первой цифрой во всех стандартных системах счисления. С нулевого дня в календаре майя начинался каждый месяц. Интересно, что тем же самым знаком ноль математики майя обозначали и бесконечность — вторую проблему современной математики. Ноль без палочки. Абсолютный нуль.

Ноль целых пять десятых. Пять умножить на ноль — равняется нулю 5 х 0 = 0 Правило умножения на ноль смотрите выше по тексту. Чатыри умножить на ноль бесплатно — бесплатно отвечаю, что будет ноль.

В нагрузку бесплатная справка — слово «четыре» пишется чуть-чуть иначе, чем пишите вы в своем поисковом запросе.

https://youtu.be/EGpr23Tc8iY

Там, где в математике встречается ноль, логика бессильна

Если вам понравилась публикация и вы хотите знать больше, помогите мне в работе над другими материалами. Оно появилось в х и чем-то меня зацепило. Вопрос Студента: А теперь, уважаемый автор, умножьте, пожалуйста, ноль на ноль и скажите, сколько получится в результате?

Я в своей статье «Что есть ноль» уже объяснил где её можно применять. Нужно просто брать те ответы, которые пишут в учебниках: ноль, умноженный на ноль, равняется нулю; на ноль делить запрещено. Из всех обозримых вариантов умножения и деления на ноль ученые неучи выбрали самый приемлемый и удобоваримый вариант.

С делением на ноль у меня лично никаких проблем нет. Про связь между формулой Герона и 0/0=1 слышу впервые. Однако есть что-то нечистое в математике. Проблемы с возведением нуля в нулевую и отрицательную степень. Но с таким же успехом можно сказать, что 0^2 тоже не имеет смысла, потому как 0^2=0^5/0^3=0/0, а на ноль делить нельзя.

Ноль в нулевой степени — выражение, не имеющее смысла. Ноль в нулевой степени равняется единице — так показывают формулы. Это количество чего угодно, каких-то реальных, материальных вещей, можно умножить на число. При этом количество чего-то выражается только нулем или положительным числом.

Все в единицах и в математике на данном уровне в порядке. Это условность, градусы не могут быть выражены количеством, поэтому умножить их на число нельзя.

Где-то на этом сайте есть Дурнев со своими вопросами по школьной программе, в том числе и по математике.

Может, его придумали точно так же, как и ноль? Чтобы наложить определенные правила и подчинить им всех остальных людей. Чего только человек не сделает ради себя, любимого.

Достаточно того, что в учебниках часто пишут «принадлежит множеству натуральных чисел» даже тогда, когда это выполняется для всех чисел, за исключением комплексных.

Бесконечное число нулей в нуле — это выдумки шаманов для пещерных людей:) Если закрыть глаза, то всё, на что мы смотрим, будет выглядеть одинаково черным.

Умножение на ноль нужно начинать рассматривать совсем с другого конца. Что такое умножение?

Достаточно понять, что такое умножение, тогда вопрос с результатом умножения на ноль сам собою решится. 2 яблока, и пытаясь умножить их на 0 яблок, в результате мы теряет свои 2 яблока. Судя по всему, те, кто это спрашивает, потеряли как минимум по одной цифре в начале каждого числа. 10 и 11 — здесь уместно говорить о процентах.

И интересно как при делении 0 на любое число вы это число сможете вычитать вообще (пусть даже и ноль раз).

Не может так просто от умножения стать ноль! Значит математика это не точная наука? Кто то когда то придумал это «правило» не известно для чего . Ваша математика ошибается.

На практике, вся эта математическая тема с умножением на 0, не может быть!!! Как 10 чего-нибудь желая приумножить, пусть даже на 0 — получится 0?? Если конечно 0 не является черная дыра, или 0 как проиграшь, в никуда, ноль — как пустота, ничто, но такого быть не может….

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Если не можете что то разделить (те же 5 яблок на 0 воображаемых корзин) то записывается результат целого числа и остаток при таком делении… 0 можно умножать многократно (типа ходил в лес 15 раз и не нашел грибов…

Например, делим 5 яблок на ноль человек; вычисляем,во сколько раз 5 градусов Цельсия больше нуля градусов Цельсия. Из этого всего скорее нельзя умножать на 0 (так как по определению умножения это НЕЛЬЗЯ записать с помощью операции сложения) и делить сам 0 на что то… так как ответ не может быть определен…

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Подмена понятий происходит при самом умножении на ноль… Запомните любое число или операция с числами умноженное на ноль АННИГИЛИРУЕТСЯ… Иными словами не происходит самой операции при умножении на ноль и ее можно просто «не учитывать»… Так, вы украли мою идею!))) Впервые встречаю более-менее четкое понимание умножения и деления на ноль. Будем мы это считать математическими операциями, или не будем — математике глубоко плевать.

Первый пример проблематичности нуля — это натуральные числа. В русских школах ноль не является натуральным числом, в других школах ноль является натуральным числом. Кому интересен вопрос возникновения нуля, предлагаю прочесть статью «История нуля» Дж. Дж. О’Коннора и Е. Ф. Робертсона в переводе И. Ю. Осмоловского.

При каких значениях икса верно равенство: ноль умноженное на икс равняется ноль? — данное равенство верно при любых значениях икс. Говорят, что это равенство имеет бесконечное множество решений. С математикой было несколько проще. Самым естественным образом на мою природную безграмотность накладываются банальные опечатки при наборе текста.

Как правильно пишется — ноль или нуль? Слова ноль и нуль совпадают в значении, но различаются употреблением. Кто сказал, что ноль — это число? Математики? 0 + 5/0… ноль и пять ( нулевых ) в остатке … и тогда все сходится и все довольны… Да на самом деле сложностей не так много. Проблема в том как воспринимать Ноль (как число или как нечто пустое) и что подразумевать под умножением…

Источник: http://kakbypridaser.ru/rassmotrim-primer-umnozheniya-na-nol-c/

Папа, а почему на ноль делить нельзя?

Моя трёхлетняя дочка София в последнее время частенько упоминает «ноль», например, в таком контексте: — Соня, вот ты вроде сначала не послушалась, а затем послушалась, что же получается?.. — Ну… ноль! Т.е. ощущение отрицательных чисел и нейтральности нуля уже имеет, о как.

Скоро поинтересуется: почему же это на ноль делить нельзя? И вот решил я простыми словами записать всё, что я ещё помню про деление на ноль и всё такое. Деление вообще лучше один раз увидеть, чем сто раз услышать. Ну, или один разделить на икс раз увидеть… Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0 Тут сразу видно, что ноль — это центр жизни, вселенной и всего такого. Ответом на главный вопрос про всё это пусть себе будет 42, а вот центр — по-любому 0. У него даже знака нет, ни плюс (послушалась), ни минус (не послушалась), он таки реально ноль. И в поросятах знает толк. Потому что если любого поросёнка умножить на ноль, то поросёнка засасывает в эту круглую чёрную дыру, и получается опять ноль. Не такой уж этот ноль и нейтральный, когда дело от сложения-вычитания доходит до умножения, не говоря уже про деление… Там если ноль сверху «0/x» — то опять чёрная дыра. Всё поедает в ноль. А вот если при делении, да ещё и снизу — «x/0», то начинается… следуй за белым кроликом, Соня! В школе тебе скажут «на ноль делить нельзя» и не покраснеют. В доказательство тыкнут на калькуляторе «1/0=» и обычный калькулятор, тоже не покраснев, напишет «E», «Error», мол, «нельзя — значит нельзя». Хотя что там у тебя будет считаться обычным калькулятором — ещё вопрос. Мне вот сейчас, в 2014-ом, стандартный калькулятор на телефоне-андроиде пишет совсем другое: Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0 Ничего себе бесконечность. Скользи себе взглядом, круги нарезай. Вот тебе и нельзя. Оказывается можно. Если осторожно. Потому что не осторожно мой Android пока тоже не согласен: «0/0=Error», опять нельзя. Попробуем ещё разок: «-1/0 = -∞», о как. Интересное мнение, но я с ним не согласен. Как не согласен и с «0/0=Error». Кстати, JavaScript, который питает нынешние сайты, тоже не согласен с калькулятором андроида: зайди в консоль браузера (ещё F12?) и напиши там: «0/0» (ввод). JS тебе ответит: «NaN». Это не ошибка. Это «Not a Number» — т.е. какая-то штука такая, но не число. При том что «1/0» JS тоже понимает как «Infinity». Это уже ближе. Но пока только тепло… В университете — высшая математика. Там пределы, полюса, и прочее шаманство. И всё усложняется, усложняется, ходят вокруг да около, но только бы не нарушать хрустальные законы математики. А вот если не пытаться вписать деление на ноль в эти существующие законы, то можно прочувствовать эту фантастику — на пальцах. Для этого посмотрим-ка ещё раз на деление: Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0 Следи за правой линией, справа налево. Чем ближе икс к нулю, тем сильнее взлетает вверх разделённое на икс. И где-то там в облаках «плюс бесконечность». Она всегда дальше, как горизонт, её не догонишь. А теперь следи за левой линией, слева направо. Та же история, только теперь разделённое улетает вниз, бесконечно вниз, в «минус бесконечность». Отсюда и мнение, что «1/0= +∞», а «-1/0 = 1/-0 = -∞». Но фокус в том, что «0 = -0», нету у нуля знака, если не усложнять с пределами. И вот если поделить единицу на такой «простой» ноль без знака, то не логично ли предположить, что получится и бесконечность — «просто» бесконечность, без знака, как ноль. Где она — сверху или снизу? Она везде — бесконечно далеко от нуля во всех направлениях. Это и есть ноль, вывернутый наизнанку. Ноль — нет ничего. Бесконечность — есть всё. И положительное, и отрицательное. Вообще всё. И сразу. Абсолют. Но там что-то было про «0/0», что-то другое, не бесконечность… Сделаем такой трюк: «2*0=0», ага, скажет учительница в школе. Ещё: «3*0=0» — опять ага. И немного наплевав на «на ноль делить нельзя», мол, весь мир и так потихоньку делит, получим: «2=0/0» и «3=0/0». В каком там классе это проходят, только без нуля, конечно. Минуточку, получается «2 = 0/0 = 3», «2=3»?! Вот поэтому и боятся, вот поэтому и «нельзя». Страшнее «1/0» только «0/0», его даже калькулятор андроида боится.

Читайте также:  Какие предметы нужно сдавать на психолога: экзамены, советы и рекомендации

А мы не боимся! Потому что у нас есть сила математики воображения. Мы можем представить себя бесконечным Абсолютом где-то там в звёздах, посмотреть оттуда на грешный мир конечных чисел и людей и понять, что с этой точки зрения они все одинаковые. И «2» c «3», и даже «-1», и училка в школе, возможно, тоже.

Так вот, я скромно предполагаю, что 0/0 — это весь конечный мир, точнее всё, что и не бесконечно и не пустота. Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0 Вот как выглядит ноль, делённый на икс, в моих фантазиях, далёких от официальной математики. На самом деле похоже на 1/х, только перегиб не в единице, а в нуле. Кстати, у 2/x перегиб в двойке, а у 0.5/x — в 0.5. Получается, 0/x при x=0 принимает все конечные значения — не бесконечности, не пустоту. Там в графике дырочка в нуле, оси проглядывают. Можно конечно возразить, что «0*0 = 0», а значит ноль (пустота) тоже попадает в категорию 0/0. Чуть забегу вперёд — там будут степени нуля и это возражение разлетится в осколки. В таких божественных категориях есть лишь пустота (0), конечный мир (0/0), и бесконечность (1/0). Упс, единичка-то в бесконечности тоже может быть тоже записана как 0/0, получится (0/0)/0 — бесконечность. Вот теперь порядок, всё можно выразить соотношением нулей. И эти категории подчиняются многим законам обычных чисел, показывая весьма интересные отношения. Например, если к бесконечности прибавить конечное, то бесконечность поглотит конечное, останется бесконечностью: 1/0 + 0/0 = (1+0)/0 = 1/0. А если бесконечность умножить на пустоту, то они поглощают друг друга, и получается конечный мир: 1/0 * 0 = (1*0)/0 = 0/0. Но это только первый уровень сновидений. Можно копать глубже. Если ты уже знаешь понятие «степень числа», и что «1/x = x^-1», то, подумав, сможешь перейти от всех этих делений и скобок (вроде (0/0)/0) просто к степеням:1/0 = 0^-1 0/0 = 0^0

0 = 0^1

Подсказка. Тут с бесконечностью и пустотой всё просто, как в школе. А конечный мир переходит к степеням вот так:0/0 = (0*1)/0 = 0*(1/0) = 0 * 1/0 = 0^1 * 0^-1 = 0^(1 + -1) = 0^(1-1)

= 0^0.

Уфф! Получается, что положительные степени нуля — это нули, отрицательные степени нуля — это бесконечности, а нулевая степень нуля — это конечный мир. Такой вот получается универсальный объект «0^x». Такие объекты прекрасно между собой взаимодействуют, опять-таки многим законам подчиняются, красота, в общем. Моих скромных познаний математики хватило, чтобы нарисовать из них абелеву группу, которая, будучи изолированной в вакууме («просто абстрактные объекты, такая форма записи, вроде экспоненты»), даже выдержала проверку крутейшим преподом по матану с вердиктом «интересно, но ничего не получится». Ещё бы тут что-нить получилось, это ж табуированная тема — деление на ноль. В общем, не грузись. Попробуем лучше просто умножить бесконечность на конечное число: 0^-1 * 0^0 = 0^(-1 + 0) = 0^-1. Опять же, бесконечность поглотила конечное число так же, как и её антипод ноль поглощает конечные числа, та же чёрная дыра: 0^1 * 0^0 = 0^(1 + 0) = 0^1. А ещё оказывается что степени — это как сила. Т.е. ноль второй степени сильнее нуля обычного (первой степени, 0^1). И бесконечность минус второй степени сильнее бесконечности обычной (0^-1). А когда пустота сталкивается с абсолютом, они меряются силой — у кого больше, тот и победит: 0^1 * 0^-2 = 0^(1 + -2) = 0^-1 = ∞. 0^2 * 0^-1 = 0^(2 + -1) = 0^1 = 0. Если же они равны силами, то аннигилируются и остаётся конечный мир: 0^1 * 0^-1 = 0^(1 + -1) = 0^0.

Кстати, официальная математика уже рядом. Её представители знают про «полюса» и что у полюсов разная сила (порядок), а так же про «нуль порядка k». Но они всё топчутся на прочной поверхности «рядом с» и боятся прыгнуть в чёрную нору дыру.

И последний для меня — третий уровень сновидений. Вот, например, эти все 0^-1 и 0^-2 — бесконечности разной силы. Или 0^1, 0^2 — нули разной силы. Но ведь и «-1» и «-2» и «+1» и «+2» — это всё — 0/0, равное 0^0, уже проходили. Получается, что с этого уровня сновидений, уже всё равно вообще что это — нули, бесконечности, и даже конечный мир туда при некотором просветлении попадает. В одну точку. В одну категорию. Называется это счастье — Сингулярность. Надо признать, что вне состояния просветления одной точки я не наблюдаю, но одну категорию — объединение «0^0 U 0^(0^0)» — вполне. Какую из всего этого можно вынести пользу? Ведь даже чуть менее безумные «мнимые числа», что тоже рвут калькуляторы в Error = √-1, и те смогли стать официальной математикой и теперь упрощают расчёты сталеварения. С делением на ноль и категориями 0^x польза, скорее, философская. Увидеть, как бесконечности и пустоты поглощают конечное, как пустота может победить бесконечность, а может случиться и наоборот. Как листья на дереве издалека кажутся одинаковыми, но если рассмотреть их внимательнее — они все разные. А если задуматься, то опять одинаковые. И мало чем отличаются от тебя или меня. Вернее, вообще ничем не отличаются, если крепко задуматься. Польза тут в умении и фокусироваться на отличиях и абстрагироваться. Это очень полезно и в работе, и в жизни, и даже в отношении к смерти.

Вот такие путешествия в кроличью нору, Соня!

Источник: https://habr.com/post/233103/

Умножение отрицательных чисел

Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками

Первый случай, который может вам встретиться — это умножение чисел с одинаковыми знаками.

Чтобы умножить два числа с одинаковыми знаками надо:

  • перемножить модули чисел;
  • перед полученным произведением поставить знак «+» (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.

  • (−3) · (−6) = +18 = 18
  • 2 · 3 = 6

Умножение чисел с разными знаками

Второй возможный случай — это умножение чисел с разными знаками.

Чтобы умножить два числа с разными знаками, надо:

  • перемножить модули чисел;
  • перед полученным произведением поставить знак «−».

Примеры умножения отрицательных и положительных чисел.

  • (−0,3) · 0,5 = −0,15
  • 1,2 · (−7) = −8,4

Правила знаков для умножения

Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

Запомните!

  • Минус на минус даёт плюс,
  •   Плюс на минус даёт минус.
+ · (+) = + + · (−) = −
− · (−) = + − · (+) = −
  1. В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.
  2. При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве — отрицательным.
  3. Пример.
  4. (−6) · (−3) · (−4) · (−2) · 12 · (−1) =

В примере пять отрицательных множителей. Значит, знак результата будет «минус».

  • Теперь вычислим произведение модулей, не обращая внимание на знаки.
  • 6 · 3 · 4 · 2 · 12 · 1 = 1728
  • Конечный результат умножения исходных чисел будет:
  • (−6) · (−3) · (−4) · (−2) · 12 · (−1) = −1728
  • Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.
  • 0 · a = 0
  • a · 0 = 0
  • a · 1 = a

Примеры:

  • 0 · (−3) = 0
  • 0,4 · 1 = 0,4

Особую роль при умножении рациональных чисел играет отрицательная единица «−1».

Запомните!

При умножении на «−1» число меняется на противоположное.

  1. В буквенном выражении это свойство можно записать:
  2. a · (−1) = (−1) · a = −a
  3. При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.
  4. Пример умножения отрицательных и положительных чисел.

Умножение числа на 0: что такое умножение, свойства 0, можно ли делить на 0

Источник: http://math-prosto.ru/?page=pages%2Fotric%2Fotric4.php

Почему на ноль делить нельзя?

Практически все школьники знают простое арифметическое правило «На ноль делить нельзя!» и никто из них не задумывается, почему с нулем невозможно выполнить такое математическое действие, как деление.

Попробуем разобрать этот арифметический принцип. Деление является одним из известных нам арифметических действий – сложение, вычитание, умножение и деление. Вычитание – действие обратное сложению, деление – умножению.

Используя эти действия, можно проверить правильность решения задач, однако, эти арифметические действия не являются равноправными. С точки зрения математической науки полноценными из четырех действия являются только сложение и умножение, которые включаются в определение понятия чисел.

Остальные действия – вычитание и деление – вытекают и базируются на двух первых.

Рассмотрим пример с вычитанием. Что значит разность двух чисел, например, «3-2»? Даже младший школьник скажет, что из числа «3» мы отнимаем число «2» и получаем «1». Однако математики видят решение этого простого примера совсем по-иному: никакого вычитания не существует, есть одно действие – сложение.

Читайте также:  Сколько костей в теле взрослого человека: из чего состоит наш скелет

Запись «3-2» представляет собой число, которое при сложении с числом «2», даст «3». Математическая запись этой задачи имеет вид уравнения с одним неизвестным «х» и выглядит следующим образом: «х+2=3». Как мы видим, никакого вычитания нет, а действие сложения позволяет нам найти подходящее неизвестное число.

Под таким же «соусом» можно рассмотреть деление. Например, «10:5» можно рассматривать следующим образом: десять яблок делим между пятью детьми. Если это действие представить, как видят его истинные математики, мы получим следующую запись: «5×х=10».

Теперь попытаемся совершить действие деления, но только с нулем. Например, запись «2:0» представим в виде уравнения с неизвестным: «0×х=2». Другими словами, нам нужно найти такое число, умножив которое на «0», мы получим «2». Вот тут и возникает основная трудность: в силу вступает неотъемлемое свойство «0» — при умножении любого числа на «0» всегда получается «0».

То есть, в арифметике не существует такого числа, которое при умножении на «0», дало бы число, отличное от нуля. А значит, наша задача не имеет решения. Запись «а:0» (где а – любое число, отличное от нуля) бессмысленна, поэтому в математике вопрос «Почему на ноль делить нельзя» демонстрирует одно из основных свойств этого «неопределенного» числа.

Почему ноль нельзя делить на ноль?

Мы доказали, что любое число нельзя разделить на ноль. А как же быть с самим нулем – можно ли «0» разделить на «0»? Ведь, если представить деление на ноль через умножение: «0×х=0», то пример решается, ведь умножать на «0» допускается. Пусть х=0, тогда наше уравнение имеет следующий вид: 0×0=0.

Получается, что можно выполнить такое действие, как: 0:0=0? Попробуем разрешить эту путаницу. Вместо неизвестного числа «х» возьмем любое число, например, «2». Получим «0×2=0».

Все верно? Значит, выражение «0:0=2» имеет смысл? Но выходит, что такое действие можно совершать с любыми числами: 0:0=10, 0:0=350, 0:0=10259…

Если для совершения действия деления на ноль подходят любые числа, то нам нет смысла выбирать из них какое-то одно. А значит, мы не сможем определенно сказать, какому из существующих чисел соответствует запись «0:0». Отсюда следует ее бессмысленность и получается, что ноль нельзя делить на ноль!

Вот такая особенность операции деления на ноль, а точнее операции умножения.

Некоторые любознательные могут задать вопрос: почему делить на ноль нельзя, а вычитать его можно? На этот вопрос ответить можно, только объяснение связано уже не с числами, а с математическими множествами и операциями над ними, которые изучаются в университетском курсе математики.

Как объяснить ребенку, почему нельзя делить на ноль?

Детские вопросы – самые сложные для взрослых. Найти на них ответ иногда очень сложно, а ответить доступно для ребенка бывает просто невозможно.

К такому вопросу относится и вопрос «Почему на ноль делить нельзя?», ответ на который не знают даже взрослые — просто их так учили в школе и над ответом никто не задумывался.

Начнем с простого. Математика, как наука, зародилась очень давно. Чтобы как-то уметь с ней обращаться наши предки придумали числа, которые что-то обозначали. Только ноль не обозначал «ничего», т.е. пустоту. Например, у тебя есть 5 мелков, если отдать другу все 5 мелков, то у тебя ничего не останется, т.е. ноль.

Теперь о делении на ноль. Если деление представить в виде ножа, разрезающего все на равные кусочки, то целое можно разделить на две, три, четыре… и т.д. равные части. Однако что-либо разделить на ноль одинаковых частей невозможно, ведь их просто не существует.

Источник: http://samoeinteresnoe.com/interesnoe-o-raznom/pochemu-na-nol-delit-nelzya.htm

Действия с нулём

В математике число ноль занимает особое место. Дело в том, что оно, по сути дела, означает «ничто», «пустоту», однако его значение действительно трудно переоценить. Для этого достаточно вспомнить хотя бы то, что именно с нулевой отметки начинается отсчет координат положения точки в любой системе координат.

Ноль широко используется в десятичных дробях для определения значений «пустых» разрядов, находящихся как до, так и после запятой.

Кроме того, именно с ним связано одно из основополагающих правил арифметики, гласящее о том, что на ноль делить нельзя.

Его логика, собственно говоря, проистекает из самой сути этого числа: действительно, невозможно представить, чтобы некая отличное от него значение (да и само оно – тоже) было разделено на «ничто».

Примеры вычисления

С нулем осуществляются все арифметические действия, причем в качестве его «партнеров» по ним могут использоваться целые числа, обычные и десятичные дроби, причем все они могут иметь как положительное, так и отрицательное значение. Приведем примеры их осуществления и некоторые пояснения к ним.

СЛОЖЕНИЕ

При прибавлении нуля к некоторому числу (как целому, так и к дробному, как к положительному, так и к отрицательному) его значение остается абсолютно неизменным.

Пример 1

Двадцать четыре плюс ноль равняется двадцать четыре.

24 + 0 = 24

Пример 2

Семнадцать целых три восьмых плюс ноль равняется семнадцать целых три восьмых.

ВЫЧИТАНИЕ

При вычитании нуля из некоторого числа (целого, дробного, положительного или отрицательного) оставляет его полностью неизменным.

Пример 1

Две тысячи сто пятьдесят два минус ноль равняется две тысячи сто пятьдесят два.

2152 – 0 = 2152

Пример 2

Сорок одна целая три пятых минус ноль равняется сорок одна целая три пятых.

УМНОЖЕНИЕ

При умножении любого числа (целого, дробного, положительного или отрицательного) на ноль получается ноль.

Пример 1

Пятьсот восемьдесят шесть умножить на ноль равняется ноль.

586 × 0 = 0

Пример 2

Ноль умножить на сто тридцать пять целых шесть седьмых равняется ноль.

0 × 135 = 0

Пример 3

Ноль умножить на ноль равняется ноль.

0 × 0 = 0

ДЕЛЕНИЕ

Правила деления чисел друг на друга в тех случаях, когда одно из них представляет собой ноль, различаются в зависимости от того, в какой именно роли выступает сам ноль: делимого или делителя?

В тех случаях, когда ноль представляет собой делимое, результат всегда равен ему же, причем вне зависимости от значения делителя.

Пример 1

Ноль разделить на двести шестьдесят пять равняется ноль.

0 : 265 = 0

Пример 2

Ноль разделить на семнадцать пятьсот девяносто шестых равняется ноль.

Делить ноль на ноль согласно правилам математики нельзя. Это означает, что при совершении такой процедуры частное является неопределенным. Таким образом, теоретически оно может представлять собой абсолютно любое число.

0 : 0 = 8 ибо 8 × 0 = 0

В математике такая задача, как деление нуля на ноль, не имеет никакого смысла, поскольку ее результат представляет собой бесконечное множество. Это утверждение, однако, справедливо в том случае, если не указаны никакие дополнительные данные, которые могут повлиять на итоговый результат.

Таковые, при их наличии, должны состоять в том, чтобы указывать на степень изменения величины как делимого, так и делителя, причем еще до наступления того момента, когда они превратились в ноль. Если это определено, то такому выражению, как ноль разделить на ноль, в подавляющем большинстве случаев можно придать некий смысл.

Источник: http://simple-math.ru/arithmetics/action-zero.php

Можно ли делить на 0 в высшей математике

В курсе школьной арифметики все математические операции проводятся с вещественными числами.

Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов.

Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем.

Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно.

Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса.  Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число.

Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой.

Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае.

Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств  дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе.

Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

Источник: https://www.kakprosto.ru/kak-961205-mozhno-li-delit-na-0-v-vysshey-matematike

Почему нельзя в математике делить на ноль и умножать бесконечность на 0 — правило

Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения, она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить. Это говорят учителя в школе, а дети обычно верят им на слово.

Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?».

Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий:

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль, то и произведение тоже станет нулевым.

  • Рассмотрим пример:
  • 0*5=0
  • Запишем это как сложение:
  • 0+0+0+0+0=0
  • Всего складываемых нолей пять, вот и получается, что
  • 0*5=0
Читайте также:  Биологические функции белков, их состав, виды, денатурация полипептида до первичной структуры

Попробуем один умножить на ноль. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится дробь, значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

0:(-5)=0

Также можно возвести любое число в нулевую степень. В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

04=0*0*0*0

Пользуемся правилом умножения, получаем 0.

Это интересно! Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение.

Для математиков не существует понятий «деление» и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Х+3=5

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0.

А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует.

А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение.

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел.

Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности».

В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.

Но что будет, если попытаться:

  • Бесконечность умножить на ноль. По идее, если мы попробуем умножить на ноль любое число, то мы получим ноль. Но бесконечностью является неопределенное множество чисел. Так как мы не можем выбрать из этого множества одно число, то выражение ∞*0 не имеет решения и является абсолютно бессмысленным.
  • Ноль делить на бесконечность. Здесь происходит та же история, что и выше. Не можем выбрать одно число, а значит не знаем на что разделить. Выражение не имеет смысла.

Важно! Бесконечность немного отличается от неопределенности! Бесконечность является одним из видов неопределенности.

Теперь попробуем бесконечность делить на нуль. Казалось бы, должна получиться неопределенность. Но если мы попробуем заменить деление умножением, то получится вполне определенный ответ.

  1. Например: ∞/0=∞*1/0= ∞*∞ = ∞.
  2. Получается такой математический парадокс.
  3. Ответ, почему нельзя делить на ноль
  4. Мысленный эксперимент, пробуем делить на ноль

Вывод

Итак, теперь нам известно, что ноль подчиняется практически всем операциям, которые производят с обычными числами, кроме одной единственной. На ноль делить нельзя только потому, что в результате получается неопределенность. Также мы узнали, как производить действия с нолем и бесконечностью. Результатом таких действий будет неопределенность.

Это интересно! Как определить определенные интегралы от нуля, константы и с доказательством

Источник: https://uchim.guru/matematika/pochemu-nelzya-delit-na-nol.html

Ответы@Mail.Ru: Объясните почему умножать на ноль можно, а делить на ноль нельзя? почему?

потмому, что умножая на 0 любое число получаешь 0. а при делении бесконечность, а детям в третем классе объяснять, что такое бесконечность нет смысла. проще им сказать что делить на 0 нельзя.

потому что нет такого числа при умнажении которого на ноль получится делимое. 5/0= ты просто не сможешь подобрать частное чтобы 5 получить

Потому что возникает противоречие.

Потому что в 5-ом классе надо было учителя слушать, а не спать на уроке!

потому что при делении появляется неопределённость на множестве чисел, котором производится операция, для детей это не несёт никакой информации. есть такой раздел математики, в котором это всё-таки можно [ссылка заблокирована по решению администрации проекта]

почему нельзя? если очень хочется, то дели и не важно сколько получится. Удачи! приятного времяпровождения!

Потому что математика вообще и арифметика в частности строятся не просто так, как взбредёт в воспалённую голову. Она (арифметика) базируется на системе утверждений, принимаемых без доказательства, так называемых аксиомах.

Главное требование, которое предъявляется к этой системе аксиом — чтобы она была непротиворечива. Примерно так: чтобы нельзя было ЛОГИЧЕСКИ вывести, что 2 Х 2 = 4 и одновременно, чтобы 2 Х 2 = 5.

Так вот, система аксиом арифметики непротиворечива только, если на ноль делить нельзя.

потому что ноль не должен быть в знаменателе

можно, только получается бесконечность. детям в третьем классе проще сказать, что делить на ноль нельзя, чем объяснить, что такое бесконечность. а вообще, например вот уравнение: 1/0=х. х*0. какое число при умножении ноль получаеться больше ноля? а никакое..

Проверка обратным действием не пройдет. Пусть 5/0=x, тогда должно быть x*0=5, а такого числа нет. Это свойство системы действительных чисел.

Тебя же не удивляет, например, что в системе целых чисел два разделить на три нельзя? Вообще существует много систем чисел, системы целых и действительных чисел, изучаемые в школе — только небольшая часть их.

Часть из них, например, комплексные числа или кватернионы, очень важна в технических и научных расчетах, часть — например, гипердействительные числа, октавы, дуалные числа и так далее, — не имеет практического значения.

на ноль делить можно равно бесконечность например сколько раз ты возьмешь 0 чтобы получилось 2 . ты будешь брать ноль бесконечность раз .

Потому что любое число, умноженное на ноль, будет ноль. В проверке нам придётся делить на ноль. Вот и причина!

Источник: https://touch.otvet.mail.ru/question/44379222

Почему на ноль делить нельзя?

Каких только вопросов не задают наши детки!.. А вот вопрос «Почему на ноль делить нельзя?» не задают. Почему? Потому что еще в школе учительница сказала, что НЕЛЬЗЯ.

Нельзя, значит, нельзя! Много позже, уже в институтах, мы узнали, что делить оказывается все-таки можно, и получится в результате — бесконечность.

Но, признайтесь, наш ум принял этот факт как некое допущение, условность, мы ведь с детства помним — нельзя. А, собственно, почему все-таки?

Для начала давайте разберемся, откуда появляется бесконечность, к понятию которой на первых курсах университета мы отнеслись с некоторой долей недоверия. Все удивительно просто: если какое-нибудь число делить на все меньшее и меньшее, то будет получаться все большее и большее значение. Чем меньше будет делитель, тем больше станет частное. Так появляется бесконечность.

Но физики и математики не любят бесконечности, потому условно принято, что на ноль делить нельзя. Получается, что допущением является невозможность делить на ноль.

Обратимся к азам математики. В арифметике существует четыре действия — сложение, вычитание, умножение и деление. Но равноправия у них нет. Математики считают основными действиями только два из них: сложение и умножение, остальные — обратные действия, следствия основных.

Рассмотрим понятие «вычитание». Для решения примера «5 — 3 = …» надо из пяти предметов убрать три, оставшееся при этом количество и будет ответом на наш пример. Но, учитывая, что основным действием считается сложение, давайте несколько изменим наш пример, записав его в виде сложения: «х + 3 = 5». То есть к какому числу надо прибавить три, чтобы получилось пять?

Так же дела обстоят с делением. Выражение «8: 4 = …» вытекает из выражения «4 • x = 8». Сколько раз по четыре надо взять, чтобы получилось восемь?

И вот он, ответ! Если 5: 0 — это вариант записи 0 • x = 5, то получается, надо найти такое число, которое при умножении на 0 даст 5.

Сколько раз по нулю надо взять, чтобы получилось что-то большее, чем ничего?! Но при умножении на 0 всегда получается 0, этот факт лежит в самом определении нуля! Числа, которое при умножении на 0 дает что-то отличное от ноля, не существует.

Получается, задача не имеет решения, а выражение 5: 0 не имеет смысла. Чтобы уменьшить количество бессмысленных задач, было принято, что на ноль делить нельзя.

Самые дотошные читатели непременно спросят: а как же с делением нуля на ноль?

Давайте разберемся. Получается, уравнение 0 • x = 0 имеет решение? Или бесконечное число решений? «Х» может быть равен и единице, и двум, и миллиону. Так, при х=0, получается 0 • 0 = 0, тогда 0: 0=0? А при х=1, 0 • 1 =0, значит, 0: 0 = 1?! Или 0: 0 = 1000000?!

Выходит, мы не можем найти решения выражения «0: 0», значит, и у этого выражения нет решения. Получается, ноль на ноль тоже делить нельзя.

Вот к таким интересным умозаключениям можно прийти, задумавшись над известным с начальных классов фактом: на ноль делить нельзя.

Заинтересовало? Дочитали до конца? Значит, именно из-за таких как вы и появился следующий жизненный анекдот.

 — Почему нельзя делить на ноль? Умножать же можно, причем тоже ноль получается.

 — Почему нельзя? Можно, только результат такого деления — бесконечность

 — А почему не ноль?

 — Ну вот, смотри: 2*0 — это два взять ноль раз, будет ноль. А 2/0 — это «сколько раз ноль умещается в двойке», бесконечность.

 — Если 2/0=х, то значит 2=х*0, то есть 2=0. А если 2=0, значит 2/0=0!

 — Ну вот, чтобы такой ерундой не заниматься, математики и приняли негласное соглашение: на ноль делить нельзя!

Источник: https://ShkolaZhizni.ru/school/articles/25893/

Ссылка на основную публикацию
Adblock
detector