В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш.
Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.
- Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.
- В векторной форме закон Кулона будет иметь вид:
- Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.
Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.
Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.
В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.
- Коэффициент k в формуле 1а) в СИ принимается равным:
- И закон Кулона можно будет записать в так называемой «рационализированной» форме:
Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.
Величина ε0 в данной формуле – электрическая постоянная.
Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:
- В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с2, а расстояние в сантиметрах. Предположим, что q = q1 = q2, тогда из формулы (4) получим:
Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:
- Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):
- В СГС данная сила будет равна:
Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.
- Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.
- Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).
- Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:
- Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:
- Поделив выражение (6) на (5) получим:
- Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.
Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.
В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.
Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с2. Величина с равна скорости света (с = 3·1010 см/с) называется электродинамической постоянной.
Закон Кулона в системе СГС будет иметь вид:
Пример
На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.
Решение
- Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:
- Где е – положительный заряд капли масла, равный заряду электрона.
- Силу ньютоновского притяжения можно выразить формулой:
- Где m – масса капли, а γ – гравитационная постоянная.
Согласно условию задачи Fк = Fн, поэтому:
- Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR3, откуда получаем:
В данной формуле постоянные π, ε0, γ известны; ε = 1; также известен и заряд электрона е = 1,6·10-19 Кл и плотность масла ρ = 780 кг/м3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10-7 м.
Источник: https://elenergi.ru/edinicy-izmereniya-zaryada-zakon-kulona.html
Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона
Знакомство с явлениями электростатики лучше начинать в сухую погоду. Расчесывая волосы, снимая свитер можно наблюдать в темноте проскакивание крошечных искр и слабое потрескивание. Если потереть пластиковую расческу о волосы и поднести ее к мелким кусочкам бумаги, то они начнут притягиваться к расческе.
Электризация – физическое явление, которое приводит к возникновению взаимодействия (притяжения или отталкивания) двух тел, например, при приведении их в плотный контакт или при трении (стекло и кожа, плексиглас и шерсть, резина и шерсть). Обнаружено в Древней Греции при трении янтаря (по-гречески – «электрон») о шерсть.
Взаимодействие наэлектризованных тел в состоянии покоя называется электростатическим взаимодействием.
Опыты по взаимодействию заряженных тел показали, что в природе существуют два вида заряда. Б. Франклин назвал один из них положительным, а другой – отрицательным. Разноименные заряды притягиваются, а одноименные – отталкиваются.
Различают следующие виды электризации:
- Трением.
- Соприкосновением.
- Через влияние
- При облучении.
При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела.
Современная теория объясняет электризацию твердых тел как перемещение электронов, входящих в состав атомов любых тел, с одного тела на другое.
В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.
Электрический заряд – характеристика заряженного тела. Минимальный заряд обозначается буквой e и равен 1,6·10–19 Кл. Такой заряд имеют электрон и протон. Первые, наиболее точные определения заряда электрона были выполнены американским ученым Р. Милликеном и русским физиком А. Ф. Иоффе.
Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.
Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.
Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется.
Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.
На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.
- Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.
- Точечный заряд – модель реальных заряженных тел, размер которых значительно меньше, чем расстояние между ними.
Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.
- Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:
- Свойства среды определяет диэлектрическая проницаемость среды ε.
- Границы применимости закона Кулона:
- для точечных зарядов
- для неподвижных зарядов
- справедлив до расстояний не меньше 10-15 м
Применение электризации
1.Электрофильтры.
Для очистки воздуха от пыли, например, при производстве цемента, очистки частиц дыма на ТЭС используют электрофильтры. Наэлектризованные частицы пыли притягиваются к заряженному элементу внутри фильтра.
2. Равномерное распыление краски краскопультом.
Электростатическая покраска используется для покрытия металлических поверхностей, например, в покрасочном цехе автомобильных кузовов. Для равномерного распыления краски на краскопульт подают отрицательный заряд, а кузову автомобиля сообщают положительный заряд. Отрицательно заряженные капельки краски равномерно распределяются по поверхности кузова, образуя прочный, ровный слой.
3. Изготовление наждачной бумаги.
4. Генератор высокого напряжения Ван де Граафа.
Электризация нашла практическое применение в науке и технике. До недавнего времени в ядерных исследованиях на ускорителях элементарных частиц широко применялся генератор Ван-дер-Ваальса.
С его помощью удавалось генерировать напряжение до нескольких миллионов вольт. Генератор разработан в 1929 году американским физиком Робертом Ван-дер-Ваальсом. Используется электризация трением.
Заряд переносится на движущейся ленте и многократно снимается с нее на полый металлический проводник.
5. Очистка зерна.
6. Дактилоскопия.
7. Лазерный принтер и ксерокс.
Электризация тел при облучении нашла применение в ксерокопирование и лазерном принтере.
8. Медицина.
При работе люстры Чижевского образуется большое количество отрицательных ионов кислорода. При вдыхании воздуха ионы кислорода отдают электрические заряды эритроцитам крови, а затем – клеткам. Вследствие чего улучшается обмен веществ в организме.
Учет электризации
- Перевозка топлива.
- Электризация нитей на ткацкой фабрике.
- Электризация самолета во время полета.
- Электризация одежды.
Опорный конспект:
Источник: http://fizclass.ru/elektricheskij-zaryad-vzaimodejstvie-elektricheskix-zaryadov-zakon-kulona/
«Взаимодействие электрических зарядов. Закон Кулона. Решение задач»
- «Взаимодействие электрических зарядов.
- Закон Кулона. Решение задач»
- Тип урока: изучение нового материала.
- Цели:
- Образовательная:
- Рассмотреть, как происходит взаимодействие точечных зарядов.
- Добиться понимания учащимися закона Кулона, его физического смысла и границ применения.
- Сравнить электростатические и гравитационные силы.
Воспитательная:
- формирование научного мировоззрения.
- формирование основных навыков решения задач на применение закона Кулона.
Развивающая:
- развитие умений наблюдать, анализировать, сравнивать и делать выводы.
Оборудование: учебник 8 класс «Физика и астрономия», ПК, проектор, экран, доска, компьютерная презентация, раздаточный материал.
План урока:
-
Организационный момент (3 минуты).
-
Актуализация имеющихся знаний (10 минут).
-
Объяснение нового материала (15 минут).
-
Решение задач (15 минут).
-
Домашнее задание, подведение итогов (2 минуты).
Ход урока.
1. Организационный момент.
— Здравствуйте! Садитесь.
— Ребята, в течение двух последних уроков мы с вами рассматривали начала электростатики, ее качественные законы (особенности). Начиная с этого урока, мы приступим к изучению количественных законов электромагнитных взаимодействий, а сегодня рассмотрим основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц (закон Кулона).
— Но прежде, давайте вспомним, что мы с вами изучили на прошлом уроке.
2.Актуализация имеющихся знаний.
- 1. Тест
- 1 вариант
- 1. Силы, действующие на заряды, правильно указаны на рисунке
-
только А
-
только Б
-
только В
-
Б и В
-
А и В
2. Если две заряженные материальные точки притягиваются, то обязательно
-
обе имеют положительный заряд
-
обе имеют отрицательный заряд
-
одна имеет положительный заряд, а другая – отрицательный
-
либо обе имеют положительный заряд, либо обе имеют отрицательный заряд
3. Если две заряженные материальные точки отталкиваются, то обязательно
-
обе имеют положительный заряд
-
обе имеют отрицательный заряд
-
либо обе имеют положительный заряд, либо обе имеют отрицательный заряд
-
одна имеет положительный заряд, а другая – отрицательный
4. Единица измерения электрического заряда (в СИ)
-
Вольт
-
Ватт
-
Кулон
-
Ом
-
Ампер
5. Водяная капля с электрическим зарядом +2.10-8 Кл соединилась с другой каплей, обладающей зарядом +2.10-8 Кл. Заряд образовавшейся капли равен
-
+4.10-8 Кл
-
+2.10-8 Кл
-
-2.10-8 Кл
-
-4.10-8 Кл
6. От водяной капли, обладающей электрическим зарядом +2е, отделилась маленькая капля с зарядом -3е. Электрический заряд оставшейся части капли равен
2 вариант
1. В каком случае взаимодействие зарядов указано правильно?
-
только А
-
только Б
-
только В
-
Б и В
-
А и В
2. Известно, что натиранием о шерсть заряжаются палочки из резины, серы, эбонита, пластмассы, капрона. Заряжается ли при этом шерсть?
-
Да, т.к. в электризации трением всегда участвуют два тела и при этом электризуются оба;
-
хотя в электризации трением участвуют два тела, в опытах всегда используются только палочки. Поэтому можно считать, что заряжаются только палочки.
3. Как взаимодействуют друг с другом эбонитовая палочка, наэлектризованная трением о мех, и стеклянная палочка, наэлектризованная трением о шёлк?
-
будут притягиваться
-
будут отталкиваться
-
не будут взаимодействовать
4. Нейтральная капля разделилась на две. Первая обладает электрическим зарядом +q . Каким зарядом обладает вторая капля?
5. Можно ли создать или уничтожить электрический заряд?
-
Нельзя создать или уничтожить электрический заряд.
-
Создать можно, уничтожить нельзя.
-
Создать нельзя, уничтожить можно.
6. Алгебраическая сумма электрических зарядов атома в нормальном состоянии равна нулю, поэтому он:
-
Заряжен отрицательно
-
Электрически нейтрален
-
Заряжен положительно
Ответы:
1 вариант: 1.В; 2.С; 3.С; 4.С; 5.А; 6.Е
2 вариант: 1.С; 2.А; 3.С; 4.С; 5.А; 6.В.
Фронтальный опрос. (Вопросы на слайдах)
-
Какие меры предосторожности надо принять, чтобы при переливании бензина из одной цистерны в другую он не воспламенился?
(Во время перевозки и при переливании бензин электризуется, может возникнуть искра, и бензин вспыхнет. Чтобы этого не произошло, обе цистерны и соединяющий их трубопровод заземляют)
-
Для заземления цистерны бензовоза к ней прикрепляют стальную цепь, нижний конец которой несколькими звеньями касается земли. Почему такой цепи нет у железнодорожной цистерны?
(Потому, что железнодорожная цистерна заземлена через колеса рельса)
-
Может ли одно и тоже тело, например эбонитовая палочка, при трении электризоваться то отрицательно, то положительно?
(Может, в зависимости от того, чем ее натирают)
-
Если вынуть один капроновый чулок из другого и держать каждый в руке на воздухе, то они расширяются. Почему?
(При трении чулки электризуются. Одноименные заряды отталкиваются. Поэтому поверхность чулка раздувается.)
-
Газета «Известия» 22 марта 1969 года поместила следующий репортаж своих корреспондентов: «…В Швеции сейчас наблюдается любопытное явление. Здороваешься за руку, и вдруг тебя бьет током, взялся за какой-то металлический предмет – опять удар. В чем дело? Все объясняется просто.
Воздух в Скандинавии сейчас настолько сух, что статическое электричество не уходит из организма, а накапливается в нем в больших количествах. От сверхмерной наэлектризованности люди становятся более раздражительными и повышенно возбудимыми».
Насколько, с точки зрения физики, обоснованы выводы авторов?
— Мы с вами сейчас вспомнили, что происходит при взаимодействии тел.
— А теперь давайте рассмотрим, с какой силой могут взаимодействовать заряженные тела.
3. Объяснение нового материала.
— Ребята, откройте тетради и запишите тему сегодняшнего урока «Взаимодействие электрических зарядов. Закон Кулона. Решение задач».
- — Первые количественные результаты по измерению силы взаимодействия двух точечных зарядов были получены в 1785 году французским ученым Шарлем Огюстеном Кулоном.
- — Сегодня мы введем понятие точечного заряда.
- Точечный заряд – заряд, сосредоточенный на теле, размеры которого малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует.
- — Понятие точечного заряда, как и материальной точки является физической абстракцией.
- — Кулон для измерения этой силы использовал крутильные весы.
- Видеодемонстрация «Крутильные весы»
- — После просмотра фильма проанализируем ответы на следующие вопросы:
-
Из каких элементов состоят крутильные весы?
-
Как Кулон определил силу взаимодействия заряженных сфер?
-
В результате многочисленных измерений силы взаимодействия двух неподвижных точечных зарядов в вакууме Кулон установил зависимость. Какую?
Крутильные весы:
-
Незаряженная сфера
-
Неподвижная заряженная сфера
-
Легкий изолирующий стержень
-
Упругая нить
-
Бумажный диск
-
Шкала
- — Итак, Кулон определял силу взаимодействия заряженных сфер по углу закручивания нити в зависимости от расстояния между ними.
- — В результате многочисленных измерений силы взаимодействия двух неподвижных точеных зарядов в вакууме Кулон установил закон, названный впоследствии его именем.
- Закон Кулона: Два неподвижных точечных электрических заряда взаимодействуют в вакууме с силой, прямо пропорциональной произведению этих зарядов и обратно пропорциональной квадрату расстояния между ними.
- где:
- q 1,q 2 — величина зарядов [Кл]
- r— расстояние между зарядами [м]
- k – коэффициент пропорциональности [Н•м2/Кл2]
- F— сила Кулона (кулоновская сила) [Н]
- — Ребята давайте запишем в тетрадь закон Кулона, величины и единицы их измерения.
- — В Международной системе единиц (СИ) за единицу электрического заряда принят 1 кулон (1 Кл).
- 1 кулон – это точечный заряд, который действует в вакууме на равный ему точечный заряд, расположенный на расстоянии, равном 1 м, силой 9•109 Н.
- — Опытным путем было установлено, что коэффициент пропорциональности k в СИ имеет вид:
В СИ закон Кулона для вакуума имеет вид:
— Дальнейшие опыты показали, что наличие вещества вокруг зарядов влияет на силу их взаимодействия.
Если, не меняя заряды и их взаимное расположение, пространство заполнить однородной непроводящей средой (керосином, водой, маслом и т.п.), то сила взаимодействия между зарядами уменьшится в ε раз.
Величина ε называется диэлектрической проницаемостью среды. Для каждой среды она имеет определенное значение, полученное опытным путем.
— Итак, закон Кулона в зависимости от среды имеет вид:
Границы применимости закона:
- Заряженные тела должны быть точечными. Если же размеры и расстояния соизмеримы, то закон Кулона не применим. В этом случае необходимо мысленно «разбить» тело на такие малые объемы, чтобы каждый из них отвечал условию точечности. Суммирование сил, действующих между элементарными объемами заряженных тел, дает возможность определить электрическую силу.
- Заряженные тела должны быть неподвижными, т.к. при движении заряженных тел проявляется действие магнитного поля, возникающего в результате этого движения.
4. Решение задач.
- 1. Во сколько раз изменится сила взаимодействия между двумя точечными заряженными телами, если:
- а) расстояние между ними увеличить в 3 раза;
- б) заряд одного из них увеличить в 5 раз?
- Дано:
- r1=r
- r2=3r
- q1=q2=q
- Решение:
- Ответ: сила уменьшится в 9 раз.
- F1/F2 — ?
- Дано:
- r=r*
- q1=q2=q
- q1*=q
- q2*=5q
- Решение:
Ответ: сила увеличится в 5 раз.
F*/F-?
2. Определите силу взаимодействия 2 одинаковых точечных зарядов по 1 мкКл, находящихся на расстоянии 30 см друг от друга.
- Дано:
- q1=q2=1 мкКл
- r=30 см
- k=9•109 Н•м2/Кл2
- СИ:
- 1•10-6 Кл
- 0,3 м
- Решение:
Ответ: F=0,01 Н
F-?
3. Сила взаимодействия двух одинаковых точечных зарядов, находящихся на расстоянии 0,5 м, равна 3,6 Н найдите величины этих зарядов.
- Дано:
- r=0,5 м
- F=3,6 Н
- k=9•109 Н•м2/Кл2
- q1=q2=q
- Решение:
Ответ: q=0,1•10-4 Кл
q — ?
4. На каком расстоянии нужно расположить два заряда 5•10 -9 Кл и 6•10 -9 Кл, чтобы они отталкивались друг от друга с силой 12•10-5 Н.?
- Дано:
- F=12•10-4 Н
- k=9•109 Н•м2/Кл2
- q1=5•10 -9 Кл
- q2 =6•10 -9 Кл
- Решение:
- Ответ: q=0,1•10-4 Кл
- r — ?
5. Определите расстояние между двумя одинаковыми электрическими зарядами, находящимися в керосине, с диэлектрической проницаемостью ε, если сила взаимодействия между ними такая же, как в вакууме на расстоянии 30 см.
- Дано:
- ε=2,5
- q1=q2=q
- F1=F2
- r2= 5м
- Решение:
- Ответ: r1=10м
- r1 — ?
- 5. Домашнее задание, подведение итогов
Д/з: §31, упр. 14 №1, 2, 4.
Источник: https://infourok.ru/vzaimodeystvie-elektricheskih-zaryadov-zakon-kulona-reshenie-zadach-624991.html
Закон Кулона. Единица электрического заряда — Класс!ная физика
«Физика — 10 класс»
Какие взаимодействия называют электромагнитными? В чём проявляется взаимодействие зарядов?
Приступим к изучению количественных законов электромагнитных взаимодействий. Основной закон электростатики — закон взаимодействия двух неподвижных точечных заряженных тел.
Основной закон электростатики был экспериментально установлен Шарлем Кулоном в 1785 г. и носит его имя.
- Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними.
- Вспомните, что и закон всемирного тяготения тоже сформулирован для тел, которые можно считать материальными точками.
- Заряженные тела, размерами и формой которых можно пренебречь при их взаимодействии, называются точечными зарядами.
Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами. Пока будем считать, что взаимодействие происходит в вакууме. Опыт показывает, что воздух очень мало влияет на силу взаимодействия заряженных тел, она оказывается почти такой же, как и в вакууме.
Опыты Кулона.
Идея опытов Кулона аналогична идее опыта Кавендиша по определению гравитационной постоянной.
Открытие закона взаимодействия электрических зарядов было облегчено тем, что эти силы оказались велики и благодаря этому не нужно было применять особо чувствительную аппаратуру, как при проверке закона всемирного тяготения в земных условиях. С помощью крутильных весов удалось установить, как взаимодействуют друг с другом неподвижные заряженные тела.
Крутильные весы состоят из стеклянной палочки, подвешенной на тонкой упругой проволочке (рис. 14.3). На одном конце палочки закреплён маленький металлический шарик а, а на другом — противовес с. Ещё один металлический шарик b закреплён неподвижно на стержне, который, в свою очередь, крепится на крышке весов.
При сообщении шарикам одноимённых зарядов они начинают отталкиваться друг от друга. Чтобы удержать их на фиксированном расстоянии, упругую проволочку нужно закрутить на некоторый угол до тех пор, пока возникшая сила упругости не скомпенсирует кулоновскую силу отталкивания шариков. По углу закручивания проволочки определяют силу взаимодействия шариков.
Крутильные весы позволили изучить зависимость силы взаимодействия заряженных шариков от значений зарядов и от расстояния между ними. Измерять силу и расстояние в то время умели. Единственная трудность была связана с зарядом, для измерения которого не существовало даже единиц.
Кулон нашёл простой способ изменения заряда одного из шариков в 2, 4 и более раза, соединяя его с таким же незаряженным шариком. Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в известном отношении.
Новое значение силы взаимодействия при новом заряде определялось экспериментально.
- Закон Кулона.
- Опыты Кулона привели к установлению закона, поразительно напоминающего закон всемирного тяготения.
- Cила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
- Силу взаимодействия зарядов называют кулоновской силой.
- Если обозначить модули зарядов через |q1 и |q2|, а расстояние между ними через r, то закон Кулона можно записать в следующей форме:
где k — коэффициент пропорциональности, численно равный силе взаимодействия единичных зарядов на расстоянии, равном единице длины. Его значение зависит от выбора системы единиц.
Такую же форму (14.2) имеет закон всемирного тяготения, только вместо заряда в закон тяготения входят массы, а роль коэффициента к играет гравитационная постоянная.
Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных зарядов направлены вдоль прямой, соединяющей эти заряды (рис. 14.4).
Подобные силы называют центральными. В соответствии с третьим законом Ньютона 1,2 = -2,1.
Единица электрического заряда.
Выбор единицы заряда, как и других физических величин, произволен. Естественно было бы за единицу принять заряд электрона, что и сделано в атомной физике, но этот заряд слишком мал, и поэтому пользоваться им в качестве единицы заряда не всегда удобно.
В Международной системе единиц (СИ) единица заряда является не основной, а производной и эталон для неё не вводится. Наряду с метром, секундой и килограммом в СИ введена основная единица для электрических величин — единица силы тока — ампер. Эталонное значение ампера устанавливается с помощью магнитных взаимодействий токов.
- Единицу заряда в СИ — кулон устанавливают с помощью единицы силы тока.
- Один кулон (1 Кл) — это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А: 1 Кл = 1 А • 1 с.
- Единица коэффициента k в законе Кулона при записи его в единицах СИ — Н • м2/Кл2, так как согласно формуле (14.2) имеем
где сила взаимодействия зарядов выражается в ньютонах, расстояние — в метрах, заряд — в кулонах. Числовое значение этого коэффициента можно определить экспериментально. Для этого надо измерить силу взаимодействия F между двумя известными зарядами |q1| и |q2|, находящимися на заданном расстоянии r, и эти значения подставить в формулу (14.3). Полученное значение k будет равно:
k = 9 • 109 Н • м2/Кл2. (14.4)
Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов, по 1 Кл каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой 1 т. Поэтому сообщить небольшому телу (размером порядка нескольких метров) заряд в 1 Кл невозможно.
Отталкиваясь друг от друга, заряженные частицы не могут удержаться на теле. Никаких других сил, способных в данных условиях компенсировать кулоновское отталкивание, в природе не существует.
Но в проводнике, который в целом нейтрален, привести в движение заряд в 1 Кл не составляет большого труда. Ведь в обычной электрической лампочке мощностью 200 Вт при напряжении 220 В сила тока немного меньше 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.
Вместо коэффициента k часто применяется другой коэффициент, который называется электрической постоянной ε0. Она связана с коэффициентом k следующим соотношением:
Закон Кулона в этом случае имеет вид
Если заряды взаимодействуют в среде, то сила взаимодействия уменьшается:
где ε — диэлектрическая проницаемость среды, показывающая, во сколько раз сила взаимодействия зарядов в среде меньше, чем в вакууме.
Минимальный заряд, существующий в природе, — это заряд элементарных частиц. В единицах СИ модуль этого заряда равен:
е = 1,6 • 10-19 Кл. (14.5)
Заряд, который можно сообщить телу, всегда кратен минимальному заряду:
q = ±N|е|,
где N — целое число. Когда заряд тела существенно больше по модулю минимального заряда, то проверять кратность не имеет смысла, однако когда речь идёт о заряде частиц, ядер атомов, то заряд их должен быть всегда равен целому числу модулей заряда электрона.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Следующая страница «Примеры решения задач по теме «Закон Кулона»» Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»
Электростатика — Физика, учебник для 10 класса — Класс!ная физика
Что такое электродинамика — Электрический заряд и элементарные частицы. Закон сохранения заряд — Закон Кулона. Единица электрического заряда — Примеры решения задач по теме «Закон Кулона» — Близкодействие и действие на расстоянии — Электрическое поле — Напряжённость электрического поля. Силовые линии — Поле точечного заряда и заряженного шара.
Принцип суперпозиции полей — Примеры решения задач по теме «Напряжённость электрического поля.
Принцип суперпозиции полей» — Проводники в электростатическом поле — Диэлектрики в электростатическом поле — Потенциальная энергия заряженного тела в однородном электростатическом поле — Потенциал электростатического поля и разность потенциалов — Связь между напряжённостью электростатического поля и разностью потенциалов.
Эквипотенциальные поверхности — Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» — Электроёмкость. Единицы электроёмкости. Конденсатор — Энергия заряженного конденсатора. Применение конденсаторов — Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»
Источник: http://class-fizika.ru/10_a168.html
Электрический заряд. Закон Кулона
Определение 1
Многие из окружающих нас физических явлений, происходящих в природе, не находят объяснения в законах механики, термодинамики и молекулярно-кинетической теории.
Такие явления основываются на влиянии сил, действующих между телами на расстоянии и независимых от масс взаимодействующих тел, что сразу отрицает их возможную гравитационную природу.
Данные силы называются электромагнитными.
Еще древние греки имели некоторое представление об электромагнитных силах. Однако только в конце XVIII века началось систематическое, количественное изучение физических явлений, связанных с электромагнитным взаимодействием тел.
Определение 2
Благодаря кропотливому труду большого количества ученых в XIX веке было завершено создание абсолютно новой стройной науки, занимающейся изучением магнитных и электрических явлений. Так один из важнейших разделов физики, получил название электродинамики.
Создаваемые электрическими зарядами и токами электрические и магнитные поля стали ее основными объектами изучения.
Электрическое поле
Понятие заряда в электродинамике играет ту же роль, что и гравитационная масса в механике Ньютона. Оно входит в фундамент раздела и является для него первичным.
Определение 3
Электрический заряд представляет собой физическую величину, которая характеризует свойство частиц или тел вступать в электромагнитные силовые взаимодействия.
Буквами q или Q в электродинамике обычно обозначают электрический заряд.
В комплексе все известные экспериментально доказанные факты дают нам возможность сделать следующие выводы:
Определение 4
Существует два рода электрических зарядов. Это, условно названные, положительные и отрицательные заряды.
Определение 5
Заряды могут переходить (к примеру, при непосредственном контакте) между телами. Электрический заряд, в отличие от массы тела, не является его неотъемлемой характеристикой. Одно конкретное тело в различных условиях может принимать разное значение заряда.
Определение 6
Одноименные заряды отталкиваются, разноименные – притягиваются. В данном факте проявляется очередное принципиальное различие электромагнитных и гравитационных сил. Гравитационные силы всегда представляют собой силы притяжения.
Закон сохранения электрического заряда является одним из фундаментальных законов природы.
В изолированной системе алгебраическая сумма зарядов всех тел неизменна:
q1+q2+q3+…+qn=const.
Определение 7
Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.
С точки зрения современной науки, носителями зарядов являются элементарные частицы. Любой обычный объект состоит из атомов.
В их состав входят несущие положительный заряд протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны являются составной частью атомных ядер, электроны же образуют электронную оболочку атомов.
По модулю электрические заряды протона и электрона эквивалентны и равняются значению элементарного заряда e.
В нейтральном атоме количество электронов в оболочке и протонов в ядре одинаково. Число любых из списка приведенных частиц называется атомным номером.
Подобный атом имеет возможность как потерять, так и приобрести один или несколько электронов. Когда такое происходит, нейтральный атом становится положительно или отрицательно заряженным ионом.
Заряд может переходить от одного тела к другому лишь порциями, в которых содержится целое число элементарных зарядов. Выходит, что электрический заряд тела является дискретной величиной:
q=±ne (n=0, 1, 2,…).
Определение 8
Физические величины, имеющие возможность принимать исключительно дискретный ряд значений, называются квантованными.
Определение 9
Элементарный заряд e представляет собой квант, то есть наименьшую возможную порцию электрического заряда.
Определение 10
Несколько выбивается из всего вышесказанного факт существования в современной физике элементарных частиц так называемых кварков – частиц с дробным зарядом ±13e и ±23e.
Однако наблюдать кварки в свободном состоянии ученым так и не довелось.
Определение 11
Для обнаружения и измерения электрических зарядов в лабораторных условиях обычно используют электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1).
Стержень со стрелкой изолирован от металлического корпуса. Соприкасаясь со стержнем электрометра, заряженное тело провоцирует распределение по стержню и стрелке электрических зарядов одного знака. Воздействие сил электрического отталкивания становится причиной отклонения стрелки на некоторый угол, по которому можно определить заряд, переданный стержню электрометра.
Рисунок 1.1.1. Перенос заряда с заряженного тела на электрометр.
Электрометр – достаточно грубый прибор. Его чувствительность не позволяет исследовать силы взаимодействия зарядов. В 1785 году был впервые открыт закон взаимодействия неподвижных зарядов. Первооткрывателем стал французский физик Ш. Кулон.
В своих опытах он измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора для измерения электрического заряда – крутильных весов (рис. 1.1.2), обладающих крайне высокой чувствительностью.
Коромысло весов поворачивалось на 1° под действием силы приблизительной 10–9 Н.
Идея измерений основывалась на догадке физика о том, что при контакте заряженного шарика с таким же незаряженным, имеющийся заряд первого разделится на равные части между телами. Так был получен способ изменять заряд шарика в два или более раз.
Определение 12
Кулон в своих опытах измерял взаимодействие между шариками, размеры которых значительно уступали разделяющему их расстоянию, из-за чего ими можно было пренебречь. Подобные заряженные тела принято называть точечными зарядами.
Рисунок 1.1.2. Прибор Кулона.
Рисунок 1.1.3. Силы взаимодействия одноименных и разноименных зарядов.
Основываясь на множестве опытов, Кулон установил следующий закон:
Определение 13
Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F=kq1·q2r2.
Силы взаимодействия являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3), а также подчиняются третьему закону Ньютона:
F1→=-F2→.
Определение 14
Кулоновским или же электростатическим взаимодействием называют воздействие друг на друга неподвижных электрических зарядов.
Определение 15
Раздел электродинамики, посвященный изучению кулоновского взаимодействия, называется электростатикой.
Закон Кулона может быть применим по отношению к точечным заряженным телам. На практике, он в полной мере выполняется в том случае, если размерами заряженных тел можно пренебречь из-за значительно превышающего их расстояния между объектами взаимодействия.
Коэффициент пропорциональности k в законе Кулона зависим от выбора системы единиц.
В Международной системе СИ единицу измерения электрического заряда представляет кулон (Кл).
Определение 16
Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.
- Коэффициент k в системе СИ в большинстве случаев записывается в виде следующего выражения:
- k=14πε0.
- В котором ε0=8,85·10-12Кл2Н·м2 является электрической постоянной.
- В системе СИ элементарный заряд e равняется:
- e=1,602177·10-19 Кл≈1,6·10-19 Кл.
- Опираясь на опыт, можно сказать, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.
Теорема 1
Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.
Принцип суперпозиции
На рисунке 1.1.4 на примере электростатического взаимодействия трёх заряженных тел поясняется принцип суперпозиции.
Рисунок 1.1.4. Принцип суперпозиции электростатических сил F→=F21→+F31→; F2→=F12→+F32→; F3→=F13→+F23→.
Рисунок 1.1.5. Модель взаимодействия точечных зарядов.
Несмотря на то, что принцип суперпозиции является фундаментальным законом природы, его использование требует некоторой осторожности, когда он применяется по отношению к взаимодействию заряженных тел конечных размеров.
Примером таковых могут послужить два проводящих заряженных шара 1 и 2.
Если к подобной системе, состоящей из двух обладающих зарядом шаров поднести еще один заряженный шар, то взаимодействие между 1 и 2 претерпит изменения по причине перераспределения зарядов.
Принцип суперпозиции предполагает, что силы электростатического взаимодействия между двумя любыми телами не зависят от наличия других обладающих зарядом тел, при условии, что распределение зарядов фиксировано (задано).
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Источник: https://Zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektricheskij-zarjad-zakon-kulona/
Измерение электрического заряда
Признаком того, что тело имеет электрический заряд, является его взаимодействие с другими телами. Об этом шла речь в предшествующем параграфе. Но такое взаимодействие в каждом отдельном случае по интенсивности может быть разным. Это дает основание утверждать, что свойство тела, называющееся электрическим зарядом, может иметь количественную меру.
Термин «электрический заряд» часто употребляют и просто для обозначения «тела, имеющего электрический заряд».
Количественную меру электрического заряда сначала назвали количеством электричества. Но со временем эта мера получила название просто электрического заряда. Итак, если говорят о значении электрического заряда, то подразумевают количественную меру свойства тела — электрического заряда.
Электрический заряд — это свойство тела, проявляющееся во взаимодействии с электромагнитным полем. Электрический заряд — это также мера свойства тела, имеющего электрический заряд.
Значение заряда протяженного тела обозначается буквой Q. Если же речь идет о заряде точечного тела, то он обозначается маленькой буквой q.
Для измерения электрического заряда используют специальные приборы. Одним из таких приборов является электрометр.
![]() |
Рис. 4.4. Электрометр конструкции Брауна |
![]() |
Рис. 4.5. Электронный зарядометр для лабораторных исследований |
Главная часть электрометра — это металлический стержень, закрепленный в металлическом корпусе с помощью втулки из непроводящего вещества (рис. 4.4).
В нижней части стержня находится легкая металлическая стрелка, которая может вращаться на горизонтальной оси. Ось стрелки проходит несколько выше ее центра масс.
Под действием только силы тяжести стрелка в обычном состоянии будет находиться в вертикальном положении. Материал с сайта http://worldofschool.ru
Если верхнего конца стержня коснуться заряженным металлическим шариком, то стержень и стрелка получат электрический заряд. Вследствие взаимодействия одноименно заряженных стержня и стрелки возникнет сила, которая повернет стрелку на определенный угол.
Экспериментально установлено, что угол отклонения стрелки будет зависеть от значения заряда на стержне и стрелке. Таким образом, измерив угол отклонения стрелки, можно сделать вывод о значении электрического заряда.
Чтобы на стрелку не влияли другие тела, металлический корпус обязательно соединяют с землей.
В технике и научных исследованиях используют более сложные и более чувствительные приборы для измерения электрических зарядов, которые называют кулон-метрами (рис. 4.5). Это, как правило, электронные приборы, принцип действия которых основан на явлении изменения параметров некоторых элементов электронных систем при сообщении им электрического заряда.
Вопросы по этому материалу:
Источник: http://WorldOfSchool.ru/fizika/el-dinamika/yavleniya/em/el/el-zaryad/izmerenie-elektricheskogo-zaryada