Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий

Оглавление:

  • Места обитания фототрофных бактерий
  • Описание фототрофных организмов и примеры
  • Тип питания фототрофов

Чтобы научиться отличать их от других бактерий, необходимо знать некоторые особенности, которые могут отличаться у разных типов этих организмов.

Места обитания фототрофных бактерий

Фототрофные бактерии распространены преимущественно в соленых и пресных водоемах. Чаще всего они обитают в местах с наличием сероводорода. Находиться они могут на любой глубине. Редко такие организмы встречаются в почвах, но если произойдет затопление земли, то может наблюдаться интенсивный рост находящихся в ней фототрофов.

Это интересно: дикорастущие растения и их разнообразие.

Развитие фототрофов легко заметить даже без микроскопических исследований и постановки накопительных культур, поскольку они часто покрывают подводные объекты яркими пленками. Серные источники, бухты, лиманы, пруды и озера полны такими фототрофными скоплениями.

При массовом развитии этих организмов может измениться цвет водоема, в которых они обитают. С небольшим количеством бактерий окрашиваются только некоторые слои воды. Окрашивание нескольких водных слоев обычно происходит на дне озер, где присутствует сероводород.

Описание фототрофных организмов и примеры

Фототрофные организмы еще называют фотосинтезирующими микроорганизмами. Световая энергия, которую поглощают фототрофы, помогает биосинтезу клеточных компонентов и энергозависимым процессам, обеспечивающим рост бактерий.

Фототрофы представлены:

  • Зелеными и пурпурными бактериями,
  • Гелиобактериями,
  • Цианобактериями,
  • Красными, зелеными, диатомовыми и другими водорослями.

Это интересно: какая часть клетки является самой главной?

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерийСамыми древними фотосинтезирующими автотрофами являются зеленые и пурпурные бактерии. Именно с них начались исследования фототрофной группы. По организации своей группы они похожи с сине-зелеными водорослями. Они получили название сине-зеленых бактерий, или цианобактерий, так как они являются прокариотами. Но по фотосинтезирующей форме, составу хлорофиллов и пигментам зеленые и пурпурные серобактерии сильно отличаются от других фототрофов.

Фотосинтез происходит в хлоропластах — специальных зеленых пластидах, расположенных в клетках. Хлоропласты содержат в себе хлорофилл, являющийся пигментом, окрашивающим части автотрофов в зеленый оттенок.

Процесс происходит только при наличии воды и углекислого газа, выделяющегося из живых организмов при дыхании. Большая часть фототрофов выделяет кислород, который жизненно необходим объектам живой природы.

Это интересно: что такое атф-молекула, ее функции и роль в организме.

Строение фотосинтетического аппарата большинства фототрофов включает:

  • Светособирающие пигменты, поглощающие световую энергию и передающую ее в реакционный центр,
  • Фотохимические реакционные центры, в которых электромагнитная форма энергии трансформируется в химическую,
  • Фотосинтетические электротранспортные системы, которые обеспечивают перенос электронов и запасают энергию в молекулах АТФ (аденозинтрифосфат).

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий

Это интересно: о единстве органического мира свидетельствуют какие факторы?

Другой группой фототрофов выступают организмы, которые называют фотогетеротрофами. Для них свойственно использование света в качестве источника энергии и органических соединений как источника углерода. Синтез АТФ фотогетеротрофами происходит с помощью фотофосфорилирования.

Поскольку эти бактерии не могут фиксировать бесцветный газ, построение биомолекул микроорганизма осуществляется с готовыми органическими соединениями.

Группа таких фототрофов включает пурпурные и зеленые несерные бактерии, гелиобактерии, галобактерии и некоторые виды цианобактерий, способные расти гетеротрофно.

Тип питания фототрофов

Восполнение запасов энергии и нужных веществ клеточными организмами осуществляется с питанием. Все разновидности питания, которые сегодня известны науке, встречаются у бактерий. Процесс обмена веществ у живых организмов имеет практически один и тот же механизм, но у микроорганизмов имеется ряд особенностей в этом плане.

Это интересно: как определить валентность по таблице Менделеева?

Световая энергия преобразуется фототрофными микроорганизмами в фотосинтетические пигменты, которые могут быть:

  • Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерийхлорофиллами. При фотосинтезе происходит выделение кислорода. Этот процесс называется кислородный или оксигенный фотосинтез. Такими процессами характеризуются цианобактерии.
  • бактериохлорофиллами. Пигменты, относящиеся к хлорофиллам, не выделяют кислород во время фотосинтеза. Используемый пигмент реагирует на свет с волной другой длины. Он не может поглощаться ни растениями, ни цианобактериями, ни водорослями. Аноксигенный, или бескислородный, фотосинтез характерен для пурпурных, зеленых и гелиобактерий.
  • бактериородопсинами. Такой пигмент фотосинтеза встречается только у галобактерий, который содержится в пурпурных мембранах.

Есть теория, что фотосинтез может осуществляться и с другим источником света. В месте подводного термального источника обнаружили серобактерии, которые обитают на глубине ниже 2 км, куда солнечный свет не может проникнуть. Есть предположение, что происходит поглощение световых волн из термального источника бактериохлорофиллом, содержащимся в серобактериях.

Главное биологическое назначение фототрофов — это обеспечение всего живого кислородом. Некоторые виды обеспечивают круговорот азота, серы и других веществ в природе. Как видно, микроорганизмы играют большую роль в этом огромном мире.

Источник: https://tvercult.ru/nauka/ponyatie-fototrofa-v-biologii-primeryi-tip-pitaniya

Бактерии — общая характеристика. Классификация, строение, питание и роль бактерий в природе

Бактерии это самый древний организм на земле, а также самый простой в своем строении. Он состоит всего из одной клетки, которую можно увидеть и изучить только под микроскопом. Характерным признаком бактерий является отсутствие ядра, вот почему бактерии относят к прокариотам.

Некоторые виды образовывают небольшие группы клеток, такие скопления могут быть окружены капсулой (чехлом). Размер, форма и цвет бактерии сильно зависит от окружающей среды.

По форме бактерии различаются на: палочковидные (бациллы), сферические (кокки) и извитые (спириллы). Встречаются и видоизмененные – кубические, С-образные, звездчатые. Их размеры колеблются от 1 до 10мкм. Отдельные виды бактерий могут активно передвигаться при помощи жгутиков. Последние иногда превышают размер самой бактерии в два раза.

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий Виды форм бактерий

Для движения бактерии используют жгутики, количество которых бывает различное – один, пара, пучок жгутиков. Расположение жгутиков также бывает разным – с одной стороны клетки, по бокам или равномерно распределены по всей плоскости.

Также одним из способов передвижения считается скольжение благодаря слизи, которой покрыт прокариот. У большинства внутри цитоплазмы есть вакуоли.

Регулировка ёмкости газа в вакуолях помогает им двигаться в жидкости вверх или вниз, а также перемещаться по воздушных каналах почвы.

Ученые открыли более 10 тысяч разновидностей бактерий, но по предположениям научных исследователей в мире существует их более миллиона видов. Общая характеристика бактерий дает возможность определиться с их ролью в биосфере, а также изучить строение, виды и классификацию царства бактерий.

Места обитания

Простота строения и быстрота адаптации к окружающим условиям помогла бактериям распространиться в широком диапазоне нашей планеты. Они существуют везде: вода, почва, воздух, живые организмы – всё это максимально приемлемое место обитания для прокариотов.

Бактерии находили как на южном полюсе, так и в гейзерах. Они есть на океанском дне, а также в верхних слоях воздушной оболочки Земли. Бактерии живут везде, но их количество зависит от благоприятных условий. К примеру, большая численность видов бактерий проживает в открытых водоемах, а также почве.

Особенности строения

Клетка бактерии отличается не только тем, что в ней нет ядра, но и отсутствием митохондрий и пластид. ДНК данного прокариота находится в специальной ядерной зоне и имеет вид замкнутого в кольцо нуклеоида.

У бактерии строение клетки состоит из клеточной стенки, капсулы, капсулоподобной оболочки, жгутиков, пили и цитоплазматичной мембраны.

Внутреннее строение оформляют цитоплазма, гранулы, мезосомы, рибосомы, плазмиды, включения и нуклеоид.

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий

Клеточная стенка бактерии выполняет функцию обороны и опоры. Вещества могут свободно протекать сквозь неё, благодаря проницаемости. Данная оболочка имеет в своем составе пектин и гемицеллюлозу.

Некоторые бактерии выделяют особую слизь, которая может помочь защититься от пересыхания. Слизь формирует капсулу – полисахарид по химическому составу. В такой форме бактерия способна переносить даже очень большие температуры.

Также она выполняет и другие функции, к примеру слипание с любыми поверхностями.

На поверхности клетки бактерии находятся тонкие белковые ворсинки – пили. Их может быть большая численность. Пили помогают клетке передавать генетический материал, а также обеспечивают слипание с другими клетками.

Под плоскостью стенки находится трехслойная цитоплазматичная мембрана. Она гарантирует транспорт веществ, а также имеет немалую роль в образовании спор.

Цитоплазма бактерий на 75 процентов произведена из воды. Состав цитоплазмы:

  • Рыбосомы;
  • мезосомы;
  • аминокислоты;
  • ферменты;
  • пигменты;
  • сахар;
  • гранулы и включения;
  • нуклеоид.

Обмен веществ у прокариотов возможен, как с участием кислорода, так и без его него. Большая их часть питаются уже готовыми питательными веществами органического происхождения. Очень мало видов способны сами синтезировать органические вещества из неорганических. Это сине-зеленые бактерии и цианобактерии, которые отыграли немалую роль в формировании атмосферы и насыщении её кислородом.

Размножение

В условиях, благоприятных для размножения, оно осуществляется почкованием или вегетативно. Бесполое размножение происходит в такой последовательности:

  1. Клетка бактерии достигает максимального объема и содержит необходимый запас питательных веществ.
  2. Клетка удлиняется, посередине появляется перегородка.
  3. Внутри клетки происходит дележ нуклеотида.
  4. ДНК основная и отделенная расходятся.
  5. Клетка делится пополам.
  6. Остаточное формирование дочерних клеток.

При таком способе размножения нету обмена генетической информацией, поэтому все дочерние клетки будут точной копией материнской.

Процесс размножения бактерий в неблагоприятных условиях более интересен. О способности полового размножения бактерий ученые узнали сравнительно недавно – в 1946 году. У бактерий нет разделения на женские и половые клетки.

Но ДНК у них встречается разнополое. Две такие клетки при приближении друг к другу образовывают канал для передачи ДНК, происходит обмен участками – рекомбинация.

Процесс довольно длительный, результатом которого являются две совершенно новые особи.

Большинство бактерий очень сложно увидеть под микроскопом, так как они не имеют своей окраски.

Немногие разновидности имеют пурпурный или зеленый окрас, благодаря содержанию в них бактериохлорофилла и бактериопурпурина.

Хотя если рассматривать некоторые колонии бактерий, становится ясно, что они выделяют окрашиваемые вещества в среду обитания и приобретают яркую окраску. Для того, чтобы подробней изучать прокариотов, их окрашивают.

Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерийФотографии бактерий под микроскопом

Классификация

Классификация бактерий может быть основана на таких показателях, как:

  • Форма
  • способ передвижения;
  • способ получения энергии;
  • продукты жизнедеятельности;
  • степень опасности.

По способу питания бывают бактерии автотрофы или гетеротрофы. Автотрофные бактерии пребывают в основном в почве. Гетеротрофы различают такие, как: симбионты, паразиты и сапрофиты.

  • Понятие фототрофа в биологии, примеры микроорганизмов, тип питания бактерий
  • Бактерии симбионты живут в содружестве с иными организмами.
  • Бактерии паразиты ничего не производят, поэтому питаются тем, что произвел организм хозяина, либо питается тканями другого организма.

Бактерии сапрофиты проживают на уже отмерших организмах, продуктах и органических отходах. Они способствуют процессам гниения и брожения.

Гниение очищает природу от трупов и других отходов органического происхождения. Без процесса гниения не было бы круговорота веществ в природе. Так в чем же состоит роль бактерий в круговороте веществ?

Бактерии гниения — это помощник в процессе расщепления белковых соединений, а также жиров и других соединений, содержащих в себе азот.

Проведя сложную химическую реакцию, они разрывают связи между молекулами органических организмов и захватывают молекулы белка, аминокислот.

Расщепляясь, молекулы высвобождают аммиак, сероводород и другие вредные вещества. Они ядовиты и могут вызывать отравление у людей и животных.

Бактерии гниения быстро размножаются в благоприятных для них условиях. Так как это не только полезные бактерии, но и вредные, то чтобы не допустить преждевременного гниения у продуктов, люди научились их обрабатывать: сушить, мариновать, солить, коптить. Все эти способы обработки убивают бактерии и не дают им размножаться.

Бактерии брожения при помощи ферментов способны расщеплять углеводы. Эту способность люди заметили еще в древние времена и используют такие бактерии для изготовления молочнокислых продуктов, уксусов, а также других продуктов питания до сих пор.

Кроме полезных, существуют также и патогенные бактерии. Их жизнедеятельность базируется на паразитизме в организме животных, растений и даже человека. Они вызывают серьезные инфекционные болезни, примером может служить туберкулез, сифилис, язву (сибирскую и язву желудка), дифтерию, чуму и многие другие не менее тяжелые заболевания.

Читайте также:  Политический режим: происхождение и определение понятия, характеристика видов и типов политических режимов

Бактерии, трудясь в совокупности с другими организмами, делают очень важную химическую работу. Очень важно знать какие есть виды бактерий и какую пользу или вред приносят для природы.

Значение в природе и для человека

Выше уже отмечалось большое значение многих видов бактерий (при процессах гниения и различных типах брожения), т.е. выполнение санитарной роли на Земле.

Бактерии также играют огромную роль в круговороте углерода, кислорода, водорода, азота, фосфора, серы, кальция и других элементов.

Многие виды бактерий способствуют активной фиксации атмосферного азота и переводят его в органическую форму, способствуя повышению плодородия почв.

Особо важное значение имеют те бактерии, которые разлагают целлюлозу, являющиеся основным источником углерода для жизнедеятельности почвенных микроорганизмов.

Сульфатредуцирующие бактерии участвуют в образовании нефти и сероводорода в лечебных грязях, почвах и морях. Так, насыщенный сероводородом слой воды в Черном море является результатом жизнедеятельности сульфатредуцирующих бактерий.

Деятельность этих бактерий в почвах приводит к образованию соды и содового засоления почвы. Сульфатредуцирующие бактерии переводят питательные вещества в почвах рисовых плантаций в такую форму, которая становится доступной для корней этой культуры.

Эти бактерии могут вызывать коррозию металлических подземных и подводных сооружений.

Благодаря жизнедеятельности бактерий почва освобождается от многих продуктов и вредных организмов и насыщается ценными питательными веществами. Бактерицидные препараты успешно используются для борьбы с многими видами насекомых-вредителей (кукурузным мотыльком и др.).

Многие виды бактерий используются в различных отраслях промышленности для получения ацетона, этилового и бутилового спиртов, уксусной кислоты, ферментов, гормонов, витаминов, антибиотиков, белково-витаминных препаратов и т.д.

Без бактерий невозможны процессы при дублении кожи, сушке листьев табака, выработке шелка, каучука, обработке какао, кофе, мочении конопли, льна и других лубоволокнистых растений, квашении капусты, очистке сточных вод, выщелачивании металлов и т.д.

Оцените, пожалуйста, статью. Мы старались:) (11

Источник: https://animals-world.ru/bakterii-obshhaya-xarakteristika/

Типы питания микроорганизмов

Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться только при постоянном притоке энергии.

В процессе питания организм получает вещества, необходимые для синтеза клеточных структур и являющиеся источником энергии для всех процессов жизнедеятельности. Характерными особенностями питания микробов являются поступление питательных веществ внутрь клетки через всю ее поверхность и высокая скорость процесса обмена веществ.

Клеточная стенка и ЦПМ микроорганизмов непроницаемы для многих высокомолекулярных веществ (полисахаридов, липидов, белков и др.

), в связи с чем эти вещества вначале расщепляются экзоферментами, выделяемыми клетками во внешнюю среду, на более простые соединения (моно- и дисахариды, аминокислоты, органические кислоты, глицерин и т. д.).

Такой процесс, свойственный только микроорганизмам, называется внешним перевариванием.

  • Питательные среды, на которых культивируют микроорганизмы в лабораторных и производственных условиях, должны отвечать следующим минимальным требованиям:
  • • в них должны присутствовать все элементы, из которых строится клетка;
  • • они должны быть в такой форме, в которой микроорганизмы способны их усваивать;
  • • они должны иметь оптимальное значение pH;
  • • среды должны быть стерильными.
  • Питательные среды различаются по консистенции, составу и назначению.

По консистенции различают жидкие, плотные и полужидкие среды. Плотные и полужидкие готовят путем добавления к жидким средам агар-агара или желатина. Для изготовления плотной среды в жидкую вносят обычно 1,5—2,0 % агар-агара, для полужидкой — 0,2—0,5 %.

Состав питательных сред определяется пищевыми потребностями микроорганизмов. В зависимости от состава исходных компонентов различают среды натуральные, синтетические и полусинтетические.

Натуральные среды состоят из естественных субстратов (мяса, молока, овощей и т. д.). К натуральным средам относятся мясопептонный бульон, гидролизованное молоко, пивное сусло, дрожжевой экстракт, настой сена, картофельная среда и др.

Расшифровать химический состав таких сред довольно сложно.

Молочнокислые бактерии очень требовательны к источникам питания, поэтому их выращивают в молоке, гидролизованном молоке, молочной сыворотке, пивном сусле, специально разработанных средах.

Синтетической называют среду, составленную из известных химических соединений в определенных количествах. Кишечная палочка неприхотлива в отношении питания, поэтому способна расти на синтетической среде достаточно простого состава.

Полусинтетические среды содержат как известные компоненты, так и субстраты неопределенного состава. Например, в синтетическую среду вносят дрожжевой автолизат или мясопептонный бульон.

  1. По назначению различают элективные и дифференциально-диагностические среды.
  2. Элективные среды используют для выделения отдельных групп микроорганизмов из мест их естественного обитания.
  3. Дифференциально-диагностические среды используют для быстрой индикации микроорганизмов на основе их характерных признаков.

Потребности микроорганизмов в питательных веществах. Исходя из химического состава микроорганизмов, для биосинтеза основных макромолекул клетка должна получать вещества, содержащие макроэлементы С, О, Н, N, S, Р, Са, Fe, Mg и микроэлементы Мn, Со, Мо, Сu, Zn и др.

Макроэлементы требуются в сравнительно больших количествах, от 0,2 до 0,5 г/л, тогда как микроэлементы нужны в очень низких концентрациях — от 0,1 до 0,001 мг/л. Минеральные вещества участвуют в регуляции осмотического давления в клетке, pH и Eh среды.

Основной функцией микроэлементов является активация различных ферментов.

Среди всех вышеуказанных элементов наибольшее значение в питании микроорганизмов имеет углерод. В зависимости от используемого источника углерода микроорганизмы делятся на: аутотрофы (от греч. autos — сам, tгорhe — пища), использующие для конструктивных целей СO2, и гетеротрофы (от греч. heteros — другой), потребляющие углерод из органических соединений.

Наибольшая степень гетеротрофности присуща микроорганизмам, являющимся облигатными или факультативными паразитами (от греч. parasitos — нахлебник).

К факультативным гетеротрофным паразитам относятся патогенные бактерии, вызывающие инфекционные заболевания у человека, животных и растений; к облигатным, способным существовать только внутри клетки хозяина, относятся риккетсии, хламидии, вирусы, некоторые простейшие.

Следующую крупную группу гетеротрофов составляют сапрофиты (от греч. sapros — гнилой, phyton — растение), использующие для своего питания разлагающиеся растительные или животные ткани. К сапрофитам относится большинство бактерий и микромицетов.

Для многих гетеротрофов оптимальным и наиболее доступным органическим источником углерода являются углеводы. Особенно широко они используют моносахариды — гексозы и пентозы. Некоторые группы микроорганизмов способны использовать в качестве источника углерода органические кислоты, первичные спирты, циклические соединения и др.

Азот и сера входят в состав органических соединений клетки в виде аминогрупп и сульфгидрильных групп аминокислот. Некоторые бактерии поглощают эти два элемента в окисленном состоянии — в форме нитратов и сульфатов.

Поэтому они сначала восстанавливаются, а затем уже используются в процессах биосинтеза. Большинство бактерий используют азот в восстановленной форме в виде аминокислот, мочевины.

Источником серы могут служить сульфиды или серосодержащие аминокислоты (например, цистеин).

Факторы роста — это вещества, которые не синтезируются многими бактериями, но необходимы им для построения органических компонентов клетки. Поэтому они должны присутствовать в питательной среде для выращивания микроорганизмов. К факторам роста относятся:

  • • аминокислоты, которые нужны для синтеза белков;
  • • пурины и пиримидины, используемые для синтеза нуклеиновых кислот;
  • • витамины, являющиеся простетическими группами или активными центрами некоторых ферментов.

Микроорганизмы, нуждающиеся в факторах роста, называют ауксотрофами. Микроорганизмы, которые сами синтезируют необходимые им факторы роста, называют прототрофами.

9.2.1. Типы питания микроорганизмов

Подразделение микроорганизмов на два основных типа — автотрофы и гетеротрофы — оказалось явно недостаточным, чтобы отразить все многообразие пищевых и энергетических потребностей микроорганизмов.

Поэтому классификация микроорганизмов по типам питания включает такие основные критерии, как источник углерода, источник энергии и донор электронов.

На основе вышеуказанных критериев все микроорганизмы можно разделить на четыре группы (табл. 6).

Таблица 6. Классификация микроорганизмов по типам питания

Тип питания Источник углерода Источник энергии Донор электронов Представители
Фотолитоавтотрофы СО2 Свет Неорганич. соединения Цианобактерии, пурпурные и зеленые серобактерии
Фотоорганогетеротрофы Органич. соединения Свет Органич. соединения Несерные пурпурные бактерии, галобактерии
Хемолитоавтотрофы СО2 Реакции окисления органич. веществ Неорганич. соединения Нитрифицирующие, тионовые, водородные бактерии
Хемоорганогетеротрофы Органич. соединения Реакции окисления органич. веществ Органич. соединения Большинство бактерий

Конструктивные процессы в микробной клетке требуют затрат энергии. Микроорганизмы, способные использовать в качестве источника энергии солнечную радиацию, называют фототрофами(фотосинтезирующими). Микроорганизмы, получающие энергию в результате окислительно-восстановительных реакций, называют хемотрофами.

В зависимости от окисляемого субстрата, называемого донором электронов, микроорганизмы делят на литотрофы (от греч. lithos — камень), использующие в качестве доноров электронов неорганические соединения, и органотрофы — использующие для этой цели органические соединения.

Источник: https://lifelib.info/microbiology/microbiology_1/28.html

Типы питания бактерий: механизмы классификации на группы

Питание позволяет клеточным организмам восполнять запасы энергии и необходимых веществ, которые расходуются в процессе жизнедеятельности. Все типы питания, известные современной науке, присутствуют у бактерий.

Обмен веществ (метаболизм) разных живых организмов имеет сходные механизмы, но у микробов есть ряд особенностей:

  1. Благодаря высокой интенсивности метаболизма вес перерабатываемых веществ в 30-40 раз больше веса самого микроорганизма.
  2. В питании участвует вся поверхность клетки.
  3. Пища перерабатывается выделяемыми ферментами снаружи, а внутрь клетки поступают образовавшиеся после этого более простые соединения.
  4. Чрезвычайно высокая адаптация к изменяющейся среде обитания.

Бактерии делятся на группы в зависимости от признака, по которому производится классификация:

  1. По используемому источнику энергии:
    • фототрофы – энергия солнечного света;
    • хемотрофы – энергия окислительно-восстановительных реакций.
  2. По типу соединения, служащего донором электронов:
    • органотрофы – органические вещества;
    • литотрофы – неорганические вещества.
  3. По источнику углерода:
    • автотрофы – углекислый газ;
    • гетеротрофы – органические вещества.

Фототрофы

К этой группе относятся бактерии, использующие для синтеза органики энергию света, которая преобразуется с помощью фотосинтетических пигментов. Такими пигментами могут быть:

  • хлорофилл;
  • бактериохлорофилл.

В первом случае фотосинтез происходит с выделением кислорода. Такой процесс называется оксигенным или кислородным фотосинтезом. Он наблюдается у цианобактерий (Cyanobacteria).

Во втором случае используется пигмент, относящийся к хлорофиллам, но реагирующий на свет с другой длиной волны, который не могут поглощать ни растения, ни водоросли, ни цианобактерии. При этом выделение кислорода не происходит (аноксигенный или бескислородный фотосинтез). Примером могут служить пурпурные (Purple bacteria), зеленые (Chlorobiaceae) и гелиобактерии (Heliobacteriaceae).

Существует теория, что для фотосинтеза могут быть использованы и другие источники света.

Так, обнаруженный в окрестностях подводного термального источника вид GSB1, относящийся к серобактериям (Chlorobiaceae), обитает на глубине более двух километров, куда не проникает солнечный свет.

Предполагается, что бактериохлорофилл этого вида поглощает длинные световые волны термального источника.

Хемотрофы

Этот тип микробов использует энергию окислительно-восстановительных реакций. Это наиболее многочисленная группа бактерий, к которой кроме других относится большинство почвенных и болезнетворных микробов.

Суть процесса состоит в поэтапном окислении органических или неорганических веществ, сопровождающемся выделением энергии. Химические реакции могут быть двух видов: аэробными, с обязательным присутствием кислорода или анаэробными, то есть бескислородными. Процессы первого типа принято называть дыханием, а второго – брожением.

Хемотрофы являются единственными живыми организмами Земли, которые не зависят от энергии света Солнца.

Органотрофы и литотрофы

Питание позволяет бактерии восполнить запас электронов, необходимых ей для многих клеточных процессов. При всем многообразии веществ, которые могут быть донорами электронов, микробы делятся на две группы:

Органотрофы окисляют органику. Донорами выступают молекулы аминокислот, жиров, сахаров (чаще всего – глюкозы). После окисления молекулы могут распадаться, образуя более простые устойчивые соединения. К органотрофам, в частности, относятся бактерии гниения.

Донорами электронов для литотрофов выступают неорганические соединения. Так, в процессе питания литотрофы могут повышать валентность металлов, окислять аммиак до нитритов или азота, нитриты – до нитратов, сульфид – до серы, серу – до сульфата, фосфит – до фосфата, угарный газ – до углекислого и т.д.

Автотрофы и гетеротрофы

Важнейшим химическим элементом, необходимым клетке, является углерод. В зависимости от источника его получения бактерии делятся на два типа – автотрофы и гетеротрофы.

Читайте также:  Самые большие страны по численности населения, сколько жителей в россии и мире

Автотрофы способны усваивать его из углекислого газа. Синтез белков, жиров и углеводов происходит на основе неорганических элементов. К этой группе, в частности, относятся многие почвенные микробы и цианобактерии. Автотрофы – это первичные производители органики, и они являются начальным звеном многих цепочек питания.

Гетеротрофы получают углерод из готовых органических соединений. Среди них выделяют паразитов (паратрофов) и сапрофитов (сапротрофов). Паразиты питаются органическими веществами, произведенными другими живыми существами. Сапрофиты – это микробы гниения, разлагающие мертвую органику. Большая их часть относится к почвенным бактериям.

Лишь малая часть микроорганизмов, в частности, хламидии (Chlamydia) и риккетсии (Rickettsia), являются строгими (облигатными) паразитами, которые способны жить только в организме хозяина. Остальные паратрофы могут обитать вне его, переходить на гнилостное питание.

Деление на автотрофов и гетеротрофов используется и для определения источника других необходимых для бактерий химических элементов – азота, фосфора, калия, магния и т.д. Так, одни почвенные бактерии в процессе питания усваивают атмосферный азот, другие окисляют аммиак, выделяющийся в процессе гниения, до нитратов, третьи окисляют нитриты до нитратов.

Полная классификация

Сочетание признаков рассмотренных выше классификаций описывает все возможные типы питания:

  1. Хемоорганоавтотрофы. Окисляют трудноусваиваемые вещества. Например, некоторые представители аминобактерий (Aminobacter), метилобактерий (Methylobacterium), флавобактерий (Flavobacterium), псевдомонад (Pseudomonas).
  2. Хемоорганогетеротрофы. Большинство видов бактерий.
  3. Хемолитоавтотрофы. Водородные, нитрифицирующие, серо-, железобактерии.
  4. Хемолитогетеротрофы. Некоторые водородные бактерии.
  5. Фотоорганоавтотрофы. Довольно редкий механизм питания, при котором окисляются неусваиваемые вещества. Встречается у некоторых пурпурных бактерий.
  6. Фотоорганогетеротрофы. Часть пурпурных и цианобактерий.
  7. Фотолитоавтотрофы. Некоторые зеленые, пурпурные и цианобактерии.
  8. Фотолитогетеротрофы. Гелиобактерии, часть пурпурных, зеленых и цианобактерий.

Кроме того, часть бактерий относят к миксотрофному типу. Они могут одновременно использовать различные типы питания.

Так, представитель родобактерий (Rhodobacteraceae) паракоккпантотропус (Paracoccus pantotrophus) обладает органогетеротрофным и литоавтотрофным типом питания.

А цианобактерии не только синтезируют органику фототрофным путем, но и могут потреблять готовые органические вещества, разлагая их до неорганических.

Зависимость развития бактерий от питания

Рост и развитие бактерий напрямую зависят не только от внешних условий среды, но во многом и от питания. Обычно это происходит по следующей схеме:

  1. При попадании микробов в питательную среду происходит их адаптация к пище и рост клеток. Популяция не увеличивается.
  2. Резкий рост численности популяции за счет деления клеток.
  3. Баланс между количеством новых и погибших клеток – относительная стабильность популяции.
  4. Сокращение численности бактерий по мере обеднения среды и накопления в ней продуктов обмена.

Если на третьей стадии обеспечивать постоянное пополнение питательных веществ и отвод продуктов метаболизма, то получится так называемая непрерывная культура. Ее широко используют в микробиологии.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник: https://probakterii.ru/prokaryotes/vital-functions/tipy-pitanija-bakterij.html

Бактерии | Биология

Бактерии — одни из самых древних организмов на Земле. Несмотря на простоту своего строения, они живут во всех возможных средах обитания.

Больше всего их насчитывается в почве (до нескольких миллиардов бактериальных клеток на 1 грамм почвы). Много бактерий в воздухе, воде, пищевых продуктах, внутри тел и на телах живых организмов.

Бактерии были обнаружены в тех местах, где другие организмы жить не могут (на ледниках, в вулканах).

Обычно бактерия — это одна клетка (хотя бывают колониальные формы). Причем эта клетка очень мелкая (от долей мкм до нескольких десятков мкм). Но главной особенностью бактериальной клетки является отсутствие клеточного ядра. Другими словами, бактерии принадлежат прокариотам.

Бактерии бывают подвижными и неподвижными. В случае неподвижных форм передвижение осуществляется с помощью жгутиков. Их может быть несколько, а может быть только один.

Клетки разных видов бактерий могут сильно отличаться между собой по форме. Бывают шаровидные бактерии (кокки), палочковидные (бациллы), похожие на запятую (вибрионы), извитые (спирохеты, спириллы) и др.

Строение бактериальной клетки

У клеток многих бактерий имеется слизистая капсула. Она выполняет защитную функцию. В частности, защищает клетку от высыхания.

Как и у клеток растений, у бактериальных клеток есть клеточная стенка. Однако, в отличие от растений, ее строение и химический состав несколько иной. Клеточная стенка состоит из слоев сложного углевода. Ее строение таково, что позволяет проникать различным веществам внутрь клетки.

Под клеточной стенкой находится цитоплазматическая мембрана.

Бактерии относятся к прокариотам, так как в их клетках нет оформленного ядра. Они не имеют и хромосом, характерных для клеток эукариот. В состав хромосомы входит не только ДНК, но и белок.

У бактерий же их хромосома состоит только из ДНК и представляет собой кольцевую молекулу. Такой генетический аппарат бактерий называется нуклеоид.

Нуклеоид находится прямо в цитоплазме, обычно в центре клетки.

У бактерий нет настоящих митохондрий и ряда других клеточных органелл (комплекса Гольджи, эндоплазматической сети). Их функции выполняют впячивания клеточной цитоплазматической мембраны. Такие впячивания называются мезосомами.

В цитоплазме есть рибосомы, а также различные органические включения: белки, углеводы (гликоген), жиры. Также клетки бактерий могут содержать различные пигменты. В зависимости от наличия тех или иных пигментов или их отсутствия, бактерии могут быть бесцветными, зелеными, пурпурными.

Питание бактерий

Бактерии возникли на заре формирования жизни на Земле. Именно они «открыли» различные способы питания. Лишь потом, с усложнением организмов, четко выделились два крупных царства: Растения и Животные. Они отличаются между собой в первую очередь по способу питания. Растения являются автотрофами, а животные — гетеротрофами. У бактерий же встречаются оба типа питания.

Питание — это способ получения клеткой или организмом необходимых органических веществ. Их можно получить из вне или синтезировать самостоятельно из неорганических веществ.

Автотрофные бактерии

Автотрофные бактерии синтезируют органические вещества из неорганических. Процесс синтеза требует энергии. В зависимости от того, откуда автотрофные бактерии получают эту энергию их делят на фотосинтезирующие и хемосинтезирующие.

Фотосинтезирующие бактерии используют энергию Солнца, улавливая его излучение. В этом они сходны с растениями. Однако, если у растений в процессе фотосинтеза выделяется кислород, то у большинства фотосинтезирующих бактерий он не выделяется.

То есть бактериальный фотосинтез анаэробен. Также зеленый пигмент бактерий отличается от аналогичного пигмента растений и называется бактериохлорофиллом. У бактерий нет хлоропластов. В основном фотосинтезирующие бактерии обитают в водоемах (пресных и соленых).

Хемосинтезирующие бактерии для синтеза органических веществ из неорганических используют энергию различных химических реакций. Энергия выделяется не во всех реакциях, а только в экзотермических.

Некоторые такие реакции протекают в бактериальных клетках. Так в нитрифицирующих бактериях протекает реакция окисления аммиака в нитриты и нитраты. Железобактерии окисляют закисное железо в окисное.

Водородные бактерии окисляют молекулы водорода.

Гетеротрофные бактерии

Гетеротрофные бактерии не способны синтезировать органические вещества из неорганических. Поэтому вынуждены получать их из окружающей среды.

Бактерии, питающиеся органическими остатками других организмов (в том числе мертвыми телами), называются бактериями-сапрофитами. По-другому их называют бактериями гниения.

Таких бактерий много в почве, где они разлагают перегной до неорганических веществ, которые впоследствии используются растениями. Молочнокислые бактерии питаются сахарами, превращая их в молочную кислоту.

Маслянокислые бактерии разлагают органические кислоты, углеводы, спирты до масляной кислоты.

Клубеньковые бактерии живут в корнях растений и питаются за счет органических веществ живого растения. Однако они связывают азот из воздуха и обеспечивают им растение. То есть в данном случае имеет место симбиоз. Другие гетеротрофные бактерии-симбионты обитают в пищеварительном аппарате животных, помогая переваривать пищу.

Существует много бактерий-паразитов. Такие бактерии живут в других живых организмах, питаются за их счет и наносят вред организму-хозяину.

Дыхание бактерий

В процессе дыхания происходит разрушение органических веществ с высвобождением энергии. Эта энергия в последствии тратится на различные процессы жизнедеятельности (например, на движение).

Эффективным способом получения энергии является кислородное дыхание. Однако некоторые бактерии могут получать энергию без кислорода. Таким образом, существуют аэробные и анаэробные бактерии.

Аэробным бактериям необходим кислород, поэтому они обитают в местах, где он есть. Кислород участвует в реакции окисления органических веществ до углекислого газа и воды. В процессе такого дыхания бактерии получают относительно большое количество энергии. Такой способ дыхания характерен для подавляющего числа организмов.

Анаэробные бактерии не нуждаются в кислороде для дыхания, поэтому могут обитать в бескислородной среде. Энергию они получают за счет реакции брожения. Данный способ окисления малоэффективен.

Размножение бактерий

В большинстве случаев для бактерий характерно размножение путем деления их клетки надвое. Перед этим происходит удвоение кольцевой молекулы ДНК. Каждая дочерняя клетка получает одну из этих молекул и, следовательно, является генетической копией материнской клетки (клоном). Таким образом, для бактерий характерно бесполое размножение.

В благоприятных условиях (при достаточном количестве питательных веществ и благоприятных условиях окружающей среды) бактериальные клетки делятся очень быстро. Так от одной бактерии за сутки могут образоваться сотни миллионов клеток.

Хотя бактерии размножаются бесполым путем, в ряде случаев у них наблюдается так называемый половой процесс, который протекает в форме конъюгации.

При конъюгации две разные бактериальные клетки сближаются, между их цитоплазмами устанавливается связь. Части ДНК одной клетки переходят во вторую, а части ДНК второй клетки — в первую.

Таким образом, при половом процессе у бактерий происходит обмен генетической информации. Иногда при этом бактерии обмениваются не участками ДНК, а целыми молекулами ДНК.

Споры бактерий

Подавляющее большинство бактерий в неблагоприятных условиях образуют споры. Споры бактерий — это в основном способ переживания неблагоприятных условий и способ расселения, а не способ размножения.

При образовании споры цитоплазма бактериальной клетки сжимается, а сама клетка покрывается плотной толстой защитной оболочкой.

Споры бактерий сохраняют жизнеспособность в течении длительного времени и способны переживать очень неблагоприятные условия (крайне высокие и низкие температуры, высыхание).

Когда спора попадает в благоприятные условия, то происходит ее набухание. После этого защитная оболочка сбрасывается, и появляется обычная бактериальная клетка. Бывает, что при этом происходит деление клетки, и образуется несколько бактерий. То есть спорообразование сочетается с размножением.

Значение бактерий

Огромна роль бактерий в круговороте веществ в природе. В первую очередь это относится к бактериям гниения (сапрофитам). Их называют санитарами природы. Разлагая остатки растений и животных, бактерии превращают сложные органические вещества в простые неорганические (углекислый газ, воду, аммиак, сероводород).

Бактерии повышают плодородие почвы, обогащая ее азотом. В нитрифицирующих бактериях протекают реакции, в процессе которых из аммиака образуются нитриты, а из нитритов — нитраты. Клубеньковые бактерии способны усваивать атмосферный азот, синтезируя азотистые соединения.

Они живут в корнях растений, образуя клубеньки. Благодаря этим бактериям, растения получают необходимые им азотистые соединения. В основном в симбиоз с клубеньковыми бактериями вступают бобовые растения. После их отмирания почва обогащается азотом.

Это нередко используется в сельском хозяйстве.

В желудке жвачных животных бактерии разлагают целлюлозу, что способствует более эффективному пищеварению.

Велика положительная роль бактерий в пищевой промышленности. Многие виды бактерий используются для получения молочнокислых продуктов, сливочного масла и сыра, квашения овощей, а также в виноделии.

В химической промышленности бактерии используются при получении спиртов, ацетона, уксусной кислоты.

В медицине с помощью бактерий получают ряд антибиотиков, ферментов, гормонов и витаминов.

Однако бактерии могут приносить и вред. Они не просто портят продукты питания, но своими выделениями делают их ядовитыми.

Существуют бактерии-паразиты. Бактериальными болезнями являются тиф, чума, ангина, туберкулез, столбняк и многие другие. Люди заражают друг друга не только при контакте, но и через воду, окружающие предметы. Споры болезнетворных бактерий могут долго сохранять жизнеспособность, переживать весьма неблагоприятные условия.

Читайте также:  Что такое неопределённая форма глагола: что такое инфинитив, как его находить и каковы его роли

Поэтому проводятся различные мероприятия, направленные на уничтожение болезнетворных бактерий и их спор: химическая и ультрафиолетовая обработка помещений, проветривание, пастеризация, кипячение, стерилизация. От многих бактериальных болезней уже изобретены предохранительные прививки.

Однако главной защитой является личная гигиена.

Источник: https://biology.su/bacteria

Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов

Процесс, в ходе которого бактериальная клетка получает из ок­ружающей среды компоненты, необходимые для построения ее биополимеров (органоидов), называется питанием.

По химическому составу и характеру биополимеров (белки, по­лисахариды, нуклеиновые кислоты, липиды) прокариотические клетки не отличаются от эукариотических. Бактериальные клетки не имеют специальных органов питания, т. е. являются голофитными.

Основными химическими компонентами бактериальной клетки являются органогены — углерод, азот, водород, кислород.

Источники углеродов: в настоящее время все бактерии, в зависимости от способности усваивать различные формы углеродосодержащих соединений, подразделяются по типу питания на две группы:

Автотрофы (autos — сам, trophe — питание) способны строить сложные соединения углерода из СО2 и Н2О. К ним относятся нитрифицирующие бактерии, железобактерии и др. Для роста автотрофных бактерий потреб­ности в питательных веществах довольно просты: вода, двуокись угле­рода и соответствующие неорганические соли.

Гетеротрофы(heteros — другой) нуждаются в готовых органических соединениях. Они подразделяются на сапрофиты (sapros — гнилой, phyton -растение) и паразиты (parasitos — нахлебник). Гетеротрофные бактерии получают энергию в результате окисления восстановленных углеродных (органических) соединений. Некоторые из них, такие как E.

coli,способны к росту на простой среде, содержащей только глюкозу и неорганические соли. Другие, например молочнокислые бактерии, — растут на сложных средах, содержащих в качестве добавок ряд органических соединений (витамины, аминокислоты и др.), которые клетки не в состоянии синтезиро­вать самостоятельно. Такие соединения называются факторами роста.

Сапрофитыиспользуют готовые органические соединения, но они независимы от других организмов. К ним относят микробов, вызывающих процессы гниения и брожения.

Паразитыэто микробы, зависимые в получении питательных веществ от макроорганизма. Различают облигатные паразиты и факультативные. Облигатные паразиты способны размножаться только в живой клетке, они не растут на питательньгх средах. К ним относятся риккетсии, хламидии и вирусы.

Источники азота.Для синтеза азотсодержащих соединений (аминокислот, пуринов, пиримидинов, витаминов) микробам нужен азот. Одни способны усваивать молекулярный азот из воздуха или неорганический азот из солей аммония, нитратов или нитритов, другие используют органические азотсодержащие соединения.

  • 1. азотфиксирующие микроорганизмы — способны усваивать моле­кулярный азот атмосферы;
  • 2. микроорганизмы, ассимилирующие неорганический азот из солей аммония — аммонифицирующие;
  • 3. микроорганизмы, ассимилирующие неорганический азот из нитратов — нитратредуцирующие;

4. микроорганизмы, ассимилирующие неорганический азот из нитритов — нитритредуцирующие.

Однако большинство патогенных для человека микроорганиз­мов способны ассимилировать только азот органических соеди­нений. Микроорганизмы, способные синтезировать все необходимые им органические соединения из глюкозы и солей аммония (углеводы, аминокислоты и др.) и не нуждающиеся в факторах роста называются прототрофами.

Микроорганизмы, неспособные синтезировать какое-либо из необ­ходимых соединений и ассимилирующие их в готовом виде из ок­ружающей среды или организма хозяина (человека, животного), называются ауксотрофами по этому соединению.Это микроорганизмы, которые нуждаются в готовых факторах роста (аминокислотах, витаминах, пуриновых и пиримидиновых основаниях). Чаще всего ими являются патогенные или условно-патогенные для чело­века микроорганизмы.

  1. Кроме углерода, азота, водорода и кислорода, для биосинтетических реакций микробам необходимы соединения, содержащие серу (она входит в состав коэнзимов), фосфор (фосфор входит в состав нуклеиновых кислот, АТФ, флавинов), минеральные соли: К, Mg, Са, Сu, Мо, необходимые для действия ферментов, факторы роста.
  2. Следует учитывать и то, что в природе встречаются бактерии, которые способны размножаться в местах с низким пищевым потоком углерода — до 0,1 мг/л в день, они получили название олиготрорфных, противоположную группу для них составляют бактерии копнотрофные, способные к росту на богатых пи­щевых субстратах.
  3. Механизмы питания бактерий

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует два типа переноса веществ в бак­териальную клетку: пассивный и активный.

При пассивном переносе вещество прони­кает в клетку только по градиенту концентра­ции. Затрат энергии при этом не происходит. Различают две разновидности пассивного пе­реноса: простую диффузию и облегченную диффузию (табл. 14).

Таблица 14. Виды транспорта в бактериальной клетке

Вид транспорта Направление транспорта Механизм транспорта
Без затрат энергии Простая диффузия   По градиенту концентрации   Диффузия через цитоплазматическую мембрану
Облегченная диффузия Диффузия через цитоплазматическую мембрану с участием пермеаз
С затратой энергии   Активный транспорт   Против градиента концентрации Взаимодействие со специфическим связывающим белком, а затем с транспортным белком, который осуществляет перенос молекулы внутрь клетки
Транслокация радикалов Независимо от градиента концентрации* Фосфорилирование субстрата, что делает невозможным его выход из клетки

* концентрация неизмененного питательного вещества внутри клетки может быть одинаковой с его внеклеточным содержанием, но концентрация химически измененного питательного соединения внутри клетки может значительно превышать концентрацию неизмененного соединения в среде.

Простая диффузия неспецифи­ческое проникновение по градиенту концентрации веществ в клетку. Осуществляется до тех пор, пока концентрация вещества не будет равной по обе стороны мембраны (внутри и вне клетки).

Скорость переноса незначительна, энергонезатратная, не имеющая субстратной специфичности.

Только мелкие гидрофобные молекулы способны проходить через гидрофобный билипидный слой мембраны, так в клетку поступает вода и растворенные в ней низкомолекулярные вещества.

Облегченная диффузия проте­кает по градиенту концентрации при обязательном участии специфических белков — пермеаз, локализованных в мембране, энергонезатратная.

На внешней стороне мембраны они распознают и связывают молекулу субстрата и обеспечивают ее перенос через мембрану. На внутренней поверхности мембраны комплекс пермеаза-субстрат диссоциирует, и молекула субстрата включается в общий метаболизм клетки.

Скорость этого способа переноса зависит от концентра­ции вещества в наружном слое.

При активном переносе вещество про­никает в клетку против градиента концен­трации при помощи белка-переносчика — пермеазы. При этом происходит затрата энергии, так как этот процесс происходит тогда, концентрация вещества в микробной клетке выше чем в питательной среде. Имеется два типа активного транс­порта.

Активный транспорт — против градиента концентрации, субстратспецифичен, энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде.

Транспортируемое вещество взаимодействует со специфическим связывающим белком (специальные связывающие белки в комплексе с пермеазами), локализованном в периплазматическом пространстве, затем связывающий белок взаимодействует с транспортным белком, находящимся в цитоплазматической мембране, который осуществляет транспорт молекулы внутрь клетки.

При этом типе активного транспортанебольшие молекулы (аминокислоты, некоторые сахара) «накачиваются» в клетку и создают концентрацию, которая может в 100-1000 раз превышать концентрацию этого вещества снаружи клетки.

Транслокация радикалов(перенос групп) — против градиента концентрации, с помощью фосфотрансферазной системы, составной частью которой является белок-переносчик, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Этот ме­ханизм обеспечивает включение в клетку некоторых сахаров (например, глю­козы, фруктозы), которые в процессе пе­реноса фосфорилируются, т. е. химически модифицируются.

Фосфорилированный белок связывает свободный сахар на наружной поверхности мембраны и транспортирует его в цитоплаз­му, где сахар освобождается в виде фосфата.

Поступив в клетку, органический источник углерода и энергии вступает в цепь биохимичес­ких реакций, в результате которых образуются АТФ и ингредиенты для биосинтетических про­цессов. Биосинтетические (конструктивные) и энергетические процессы протекают в клетке одновременно.

  • 5. Классификация микроорганизмов в зависимости от источника энергии
  • В зависимости от источника энергии микроорганизмы делят на:
  • фототрофы (энергию получают за счет фотосинтеза — например, цианобактерии)
  • хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций).

Если при этом донорами электронов являются неорганические соединения, то это хемолитотрофы, если органические — хемоорганотрофы (табл. 15). К последним принадлежит значительное боль­шинство бактерий, в том числе патогенные для человека виды.

Таблица 15. Классификация бактерий по типам питания и источникам энергии

Группа Бактерий   Источник подгруппа
питание энергии
Автотрофы С02 N, S, Р, Н2О, различные неорганичес­кие соединения     Фотосинтез автофотолитотрофы (цианобактерии)
Хемосинтез автохемолитотрофы (нитрифицирующие бактерии, азотфиксирующие бактерии)
Гетеротрофы Органические соединения   Фотосинтез гетерофотоорганотрофы (некоторые виды цианобактрий)
Хемосинтез гетерохемоорганотрофы (бактерии — возбудители инфекционных заболеваний)

У прокариотов возможны три пути получения энергии, которые различаются по выходу энергии: фотосинтез, дыхание и брожение.

Фотосинтез(фотосинтетическое фосфорилирование). Основные участники фотосинтетического фосфорилирования:энергия фотонов, хлорофилл или его аналоги — пигменты, СО2 . Вся энергия на земле — это энергия солнечного света.

Эту энергию способна усваивать очень небольшая группа микробов, содержащих пигменты, подобные хлорофиллу. Они составляют группу цианобактерий (старое название — сине-зелёные водоросли). Однако большинство бактерий получают энергию путем химических реакций.

Они называются скотобактерии.

Энергия в бактериальной клетке накап­ливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, — это реакции окисления-восстановления, сопря­женные с реакциями фосфорилирования. Окисленный в этих реакциях углерод вы­деляется клеткой ввиде СO2.

Для удаления отщепившегося в этих реакциях водорода, который находится в форме восстановлен­ного НАД, различные бактерии используют различные возможности в зависимости от конечного акцептора водорода (или элект­ронов, что является эквивалентным поня­тием).

В зависимости от способа получения энергии у бактерий имеется несколько типов метаболизма: окислительный, или дыхание; бродильный, или ферментативный; смешан­ный.

Тип метаболизма определяет не только реакции, в результате которых образуется АТФ, он также определяет конечные продук­ты этих реакций, которые используются при идентификации бактерий, а также условия культивирования бактерий.

Дыхание(окислительное фосфорилирование). Представляет собой процесс взаимодействие субстрата со свободным кислородом и ферментами дыхательной цепи.Дыхание или биологическое окислениесовокупность биохимических процессов, сопровождающихся образованием энергии, необходимой для жизнеобеспечения клетки.

Дыханиепроцесс получения энергии в реакциях окисления-восстановления, со­пряженных с реакциями окислительного фосфорилирования, при котором донора­ми электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором — только неорганические соединения.

Одним из основных путей реализации энергии, содержащейся в фосфорных связях органических соединений, является способность передавать фосфатный остаток другим соединениям. Это называется фосфорилированием.Фосфорилирование делает соединение нестабильным. Оно распадается с выделением энергии. Поэтому АТФ называют энергетической валютой клетки.

Окислительный метаболизм.Бактерии, об­ладающие окислительным метаболизмом, энергию получают путем дыхания. У бактерий, обладающих окислительным ме­таболизмом, акцептором электронов (или во­дорода (Н+) является молекулярный кислород.

Суть окисления заключается в присоединении кислорода или в отнятии водорода от субстрата, в результате чего происходит расщепление вещества и разрушение химических связей. Энергия этих связей выделяется в окружающую среду и почти на 70% улавливается клеткой в виде биологической энергии, т.е. в виде образования высокоэнергетических соединений, главным из которых является АТФ и УДФ.

Кроме АТФ (аденозинтрифосфат) у прокариот энергия накапливается в УДФ (уридиндифосфат), ферментных комплексах НАДФ (никотинаденин-динуклеотидфосфат) и ФАДФ (флавинаденин-динуклеотидфосфат), пирофосфате и волютине (орто- и метафосфаты).

Все процессы дыхания происходят на ЦПМ и начинаются с гликолиза, в результате которого образуется пировиноградная кислота или пируват (ПВК). Пировиноградная кислота является исходным материалом для дальнейших катаболических реакций.

Таким образом, дыхание — это биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ.

В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание.

При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О2), при анаэробном — связанный кислород (-NO3 , =SO4, =SO3).

Источник: https://cyberpedia.su/9x1377f.html

Ссылка на основную публикацию
Adblock
detector