Функции белка в клетке: структура белковой молекулы, виды органического вещества

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые(имея в своём составе карбоксильную и аминогруппы)обладают свойствами кислоты и основания (амфотерны).

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего (20) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).

Функции белка в клетке: структура белковой молекулы, виды органического вещества

  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).

Функции белка в клетке: структура белковой молекулы, виды органического вещества

  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).

Функции белка в клетке: структура белковой молекулы, виды органического вещества

  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении (1) г белка до конечных продуктов выделяется (17,6) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/khimicheskii-sostav-kletki-16040/re-e49d7227-24e6-4088-ac25-5ba28bc78f36

2.3.3. Органические вещества клетки. Белки

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты. Белки синтезируются в живых организмах и выполняют в них определенные функции.В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.

Мономеры белков – аминокислоты – вещества, имеющие в своем составе неизменяемые части аминогруппу NH2 и карбоксильную группу СООН и изменяемую часть – радикал. Именно радикалами аминокислоты отличаются друг от друга.

Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен.

Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

В белках встречается 20 видов различных аминокислот, некоторые из которых животные синтезировать не могут. Они получают их от растений, которые могут синтезировать все аминокислоты. Именно до аминокислот расщепляются белки в пищеварительных трактах животных. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

Структура белковой молекулы – ее аминокислотный состав, последовательность мономеров и степень скрученности молекулы, которая должна умещаться в различных отделах и органоидах клетки, причем не одна, а вместе с огромным количеством других молекул.

1.Последовательность аминокислот в молекуле белка образует его первичную структуру. Она зависит от последовательности нуклеотидов в участке молекулы ДНК (гене), кодирующем данный белок.

Соседние аминокислоты связаны пептидными связями, возникающими между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты.2.Длинная молекула белка сворачивается и приобретает сначала вид спирали – вторичная структура белковой молекулы.

Между СО и NH – группами аминокислотных остатков  соседних витков спирали, возникают водородные связи, удерживающие цепь.3.Молекула белка сложной конфигурации в виде глобулы (шарика), приобретает третичную структуру. Прочность этой структуры обеспечивается гидрофобными, водородными, ионными и дисульфидными S-S связями.4.

Некоторые белки имеют четвертичную структуру, образованную несколькими полипептидными цепями (третичными структурами). Четвертичная структура так же удерживается слабыми нековалентными связями – ионными, водородными, гидрофобными.

Однако прочность этих связей невелика и структура может быть легко нарушена. При нагревании или обработке некоторыми химическими веществами белок подвергается денатурации и теряет свою биологическую активность.

Нарушение четвертичной, третичной и вторичной структур обратимо. Разрушение первичной структуры необратимо.Белки имеют видовую специфичность: каждый вид организмов обладает белками, не встречающимися у других видов.

Таблица. Образование структур (уровня пространственной организации) белков

Функции белка в клетке: структура белковой молекулы, виды органического вещества Функции белка в клетке: структура белковой молекулы, виды органического вещества

Функции белков

Каталитическая  (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении).

Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.Транспортная  – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.

Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь.Структурная  – одна из основных функций белков. Белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия.

Сократительная – обеспечивается сократительными белками – актином и миозином.Сигнальная  – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.

Энергетическая  – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры.

Таблица. Основные функции белков и пептидов

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Функции белка в клетке: структура белковой молекулы, виды органического вещества Функции белка в клетке: структура белковой молекулы, виды органического вещества Функции белка в клетке: структура белковой молекулы, виды органического вещества

Тематические задания

Часть А

  • А1. Последовательность аминокислот в молекуле белка зависит от:1) структуры гена2) внешней среды3) их случайного сочетания
  • 4) их строения
  • А2. Человек получает незаменимые аминокислоты путем1) их синтеза в клетках   3) приема лекарств2) поступления с пищей  
  • 4) приема витаминов
  • А3. При понижении температуры активность ферментов1) заметно повышается          2) заметно понижается3) остается стабильной         
  • 4) периодически изменяется
  • А4. В защите организма от кровопотерь участвует1) гемоглобин 2) коллаген 3) фибрин
  • 4) миозин

А5. В каком из указанных процессов белки не участвуют?1) обмен веществ                    2) кодирование наследственной информации3) ферментативный катализ  

  1. 4) транспорт веществ
  2. А6. Укажите пример пептидной связи:

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Часть В

  • В1. Выберите функции, характерные для белков1) каталитическая 2) кроветворная   3) защитная 4) транспортная    5) рефлекторная  
  • 6) фотосинтетическая
  • В2. Установите соответствие между структурой белковой молекулы и ее особенностями
ОСОБЕННОСТИ СТРУКТУРЫ СТРУКТУРА БЕЛКОВОЙ МОЛЕКУЛЫ
  1. А) имеет форму глобулыБ) удерживается пептидными связямиВ) удерживается пептидными, водородными, дисульфидными связямиГ) определяется последовательностью нуклеотидов в генеД) определяет биологическую активность белка
  2. Е) не спирализована
  • 1) первичная
  • 2) третичная

Часть  С

С1. Почему продукты хранят в холодильнике?С2. Почему продукты, подвергшиеся тепловой обработке, хранятся дольше?СЗ.

Объясните понятие «специфичность» белка, и какое биологическое значение имеет специфичность?С4. Прочитайте текст, укажите номера предложений, в которых допущены ошибки и объясните их.

1) Большая часть химических реакций в организме катализируется ферментами. 2) Каждый фермент может катализировать множество типов реакций.

3) У фермента есть активный центр, геометрическая форма которого изменяется в зависимости от вещества, с которым фермент взаимодействует. 4) Примером действия фермента может быть разложение мочевины уреазой. 5) Мочевина разлагается на двуокись углерода и аммиак, которым пахнет кошачий лоток с песком.

6) За одну секунду уреаза расщепляет до 30000 молекул мочевины, в обычных условиях на это потребовалось бы около 3 млн. лет.

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/kletka-kak-biologicheskaya-sistema/2-3-3-organicheskie-veshchestva-kletki-belki

Строение и функции белков

Белки – полимеры, мономерами которых являются аминокислоты.

Среди органических веществ белки занимают первое место по количеству и по значению. В организме человека встречаются 5 млн разнообразных белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения они построены всего из 20 различных аминокислот.

Строение аминокислоты:

Функции белка в клетке: структура белковой молекулы, виды органического вещества

В левой части молекулы расположены группа H2N–, которая обладает свойствами основания; справа — группа –COOH — кислотная, характерная для всех органических кислот.

Следовательно, аминокислоты – амфотерные соединения, совмещающие свойства и кислоты и основания. Этим обусловлена их способность взаимодействовать друг с другом. Соединяясь, молекулы аминокислот образуют связи между углеродом кислотной и азотом основной групп.

Читайте также:  Климат русской равнины: описание особенностей восточно-европейского региона

Такие связи называются ковалентными, а в данном случае – пептидными связями:

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Соединение двух аминокислот в одну молекулу называется дипептидом, трех аминокислот – трипептидом и т. д., а соединение, состоящее из 20 и более аминокислотных остатков, – полипептидом.

Последовательность аминокислот в полипептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных остатков, последовательно соединенных между собой пептидными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация.

Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот белковая молекула принимает вид спирали (α-структура) или складчатого слоя – «гармошки» (β-структура). Это вторичная структура белка.

Но и ее часто недостаточно для приобретения характерной биологической активности.

Часто только молекула, обладающая третичной структурой, может выполнять роль катализатора или любую другую. Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу.

Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или S–S, связи.

Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает форму шарика, или глобулы. Способ укладки полипептидных спиралей в глобуле называют третичной структурой белка.

Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требуется участие белков с еще более высоким уровнем организации.

Такую организацию называют четвертичной структурой. Присутствует не у всех белков. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого сложного белка – гемоглобин.

Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы – инсулин, включающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъединиц и разнообразные небелковые компоненты.

Тот же гемоглобин содержит сложное гетероциклическое соединение, в состав которого входит железо.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структура

Строение молекулы гемоглобина

Гемоглобин – белок четвертичной структуры. В молекуле гемоглобина белковый компонент представлен белком глобином, небелковый компонент – гем. Глобин состоит из 4 субъединиц. Внутри каждой субъединицы имеется гидрофобный «карман», в котором располагается гем. Содержащийся в геме атом железа связывает кислород.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Свойства белка

Белки, как и другие неорганические и органические соединения, обладают рядом физико-химических свойств:

  1. Белки – преимущественно водорастворимые молекулы и, следовательно, могут проявлять свою функциональную активность только в водных растворах.
  2. Белковые молекулы несут большой поверхностный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран каталитической активности и других функций.
  3. Белки термолабильны, то есть проявляют свою активность в узких температурных рамках.

Денатурация и ренатурация белков

Денатурация  – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестких условиях – и первичной структуры. В результате денатурации белок теряет способность выполнять свою функцию.

Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов и органических растворителей.

 Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренатурации.

  • Функции белка в клетке: структура белковой молекулы, виды органического вещества
  • Функции белков
  • 1. Каталитическая (ферментативная) функция:

Многие белки являются ферментами. Ферменты — это биологические катализаторы, т. е. вещества, ускоряющие протекание химических реакций в живых организмах. Ферменты участвуют в процессах синтеза и расщепления различных веществ. Они обеспечивают фиксацию углерода в процессе фотосинтеза, расщепление питательных веществ в пищеварительном тракте и т. д. 

Функции белка в клетке: структура белковой молекулы, виды органического вещества

2. Транспортная функция

Многие белки способны присоединять и переносить различные вещества. Гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из нее.

3. Защитная функция

Белки предохраняют организм от вторжения чужеродных организмов и от повреждений. Так, в ответ на проникновение чужеродных объектов (антигенов) определенные лейкоциты вырабатывают специфические белки — иммуноглобулины (антитела), участвующие в иммунном ответе организма. Белок плазмы крови фибриноген, участвуя в свертывании крови и тем самым уменьшая кровопотери.

4. Двигательная (сократительная) функция

Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Так, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения.

5. Структурная (строительная, пластическая) функция

Белки входят в состав всех клеток и тканей живых организмов. Белки являются обязательным компонентом всех клеточных мембран и органоидов клетки. Из белков построены элементы цитоскелета, сократительные элементы мышечных волокон.

Преимущественно из белков состоят хрящи и сухожилия. В их состав входит белок коллаген. Важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт у животных является белок кератин.

В состав связок, стенок артерий и лёгких входит структурный белок эластин.

6. Сигнальная (рецепторная) функция

Некоторые белки клеточных мембран способны изменять свою структуру в ответ на действие внешних факторов. С помощью этих белков происходит прием сигналов из внешней среды и передача информации в клетку.

7. Регуляторная функция

Некоторые белки являются гормонами. Они влияют на различные физиологические процессы. Например, инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) — процессы роста и физического развития.

  1. 8. Запасающая (питательная) функция
  2. В семенах растений запасаются резервные белки, которые используются при прорастании зародышем.
  3. 9. Энергетическая функция

При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и жиров.

Источник: http://biologyonline.ru/index.php/2-uncategorised/4-stroenie-i-funktsii-belkov-konspekt

Строение белков

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Среди органических веществ белки, или протеины, — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 — 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами. Кроме углерода, кислорода, водорода и азота, в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами.

Функции белка в клетке: структура белковой молекулы, виды органического вещества

Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.

Большинство белков имеют вид спирали в результате образования водородных связей между —CO- и —NH- группами разных аминокислотных остатков полипептидной цепи.

Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль — вторичная структура белка.

Третичная структура — трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация — глобула. Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.

Нарушение природной структуры белка называют денатурацией. Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде полипептидной цепи.

Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

  • Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки
  • Другие заметки по биологии

Источник: http://edu.glavsprav.ru/info/stroenie-belkov

Функции белков в организме | Химия онлайн

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

Растения синтезируют белки из углекислого газа и воды за счет фотосинтеза. Животные организмы получают, в основном, готовые аминокислоты с пищей и на их базе строят белки своего организма.

Ни один из известных нам живых организмов не обходится без белков.

Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

  • Видеофильм «Функции белков»
  • Разнообразные функции белков определяются a-аминокислотным составом и строением их высокоорганизованных макромолекул.
  • Функции белка в клетке: структура белковой молекулы, виды органического вещества

1. Каталитическая (ферментативная) функция

Каталитическая функция — одна из основных функций белков. Абсолютно все биохимические процессы в организме протекают в присутствии катализаторов – ферментов. Все известные ферменты представляют собой белковые молекулы.

Белки – это очень мощные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой фермент.

  1. В настоящее время известно свыше 2000 различных ферментов, которые являются биологическими катализаторами.
  2. Например, фермент пепсин расщепляет белки в процессе пищеварения.
  3. Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой.
  4. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК.

2. Транспортная функция 

  • Некоторые белки способны присоединять и переносить (транспортировать) различные вещества по крови от одного органа к другому и в пределах клетки.
  • Белки транспортируют липиды (липопротеиды), углеводы (гликопротеиды), ионы металлов (глобулины), кислород и углекислый газ (гемоглобин), некоторые витамины, гормоны и др.
  • Например, альбумины крови транспортируют липиды и высшие жирные кислоты (ВЖК), лекарственные вещества, билирубин.

Белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин.

Читайте также:  Краткое содержание «денискиных рассказов»: читать пересказ лучших рассказов онлайн

Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

Белок миоглобин запасает кислород в мышцах.

Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.

3. Защитная функция 

Защитную функцию выполняют специфические белки (антитела — иммуноглобулины), которые вырабатываются иммунной системой организма. Они обеспечивают физическую, химическую и иммунную защиту организма путем связывания и обезвреживания веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Например, белок плазмы крови фибриноген участвует в свертывании крови (образовывает сгусток). Это защищает организм от потери крови при ранениях.

Альбумины обезвреживают ядовитые вещества (ВЖК и билирубин) в крови.

Антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки. Интерфероны — универсальные противовирусные белки.

Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.

4. Сократительная (двигательная) функция

Важным признаком жизни является подвижность, в основе которой лежит данная функция белков, таких как актин и миозин – белки мышц. Кроме мышечных сокращений к этой функции относят изменение форм клеток и субклеточных частиц.

B результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

5. Структурная функция

Структурная функция — одна из важнейших функций белков. Белки играют большую роль в формировании всех клеточных структур.

Белки – это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей, эластин стенок кровеносных сосудов, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

Кератин синтезируется кожей. Волосы и ногти – это производные кожи.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

6. Гормональная (регуляторная) функция 

Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы.

Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

 Интересно знать!

В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

7. Питательная (запасная) функция

Питательная функция осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост  и развитие плода, а белки молока служат источником питания для новорожденного.

8. Рецепторная (сигнальная) функция

Некоторые белки (белки-рецепторы), встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку.

Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином.

Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

 9. Энергетическая функция

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Но в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.Функции белка в клетке: структура белковой молекулы, виды органического вещества

Белки

Источник: https://himija-online.ru/organicheskaya-ximiya/belki/funkcii-belkov-v-organizme.html

Строение белков. Структуры белков: первичная, вторичная, третичная и четвертичная. Простые и сложные белки | Биология

Строение белков. Структуры белков: первичная, вторичная, третичная и четвертичная. Простые и сложные белкиФункции белка в клетке: структура белковой молекулы, виды органического вещества

Строение белков. Структуры белков: первичная, вторичная, третичная и четвертичная. Простые и сложные белки

Название «белки» происходит от способности многих из них при нагревании становиться белыми. Название «протеины» происходит от греческого слова «первый», что указывает на их важное значение в организме. Чем выше уровень организации живых существ, тем разнообразнее состав белков.

Белки образуются из аминокислот, которые соединяются между собой ковалентной – пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой. При взаимодействии двух аминокислот образуется дипептид (из остатков двух аминокислот, от греч. пептос – сваренный).

Замена, исключение или перестановка аминокислот в полипептидной цепи вызывает возникновение новых белков. Например, при замене лишь одной аминокислоты (глутамина на валин) возникает тяжелая болезнь – серповидно-клеточная анемия, когда эритроциты имеют другую форму и не могут выполнять свои основные функции (перенос кислорода).

При образовании пептидной связи отщепляется молекула воды. В зависимости от количества аминокислотных остатков выделяют:

олигопептиды  (ди-, три-, тетрапептиды и т. п.) – содержат до 20 аминокислотных остатков;

  • полипептиды – от 20 до 50 аминокислотных остатков;
  • белки – свыше 50, иногда тысячи аминокислотных остатков
  • По физико-химическим свойствам различают белки гидрофильные и гидрофобные.
  • Существуют четыре уровня организации белковой молекулы – равноценные пространственные структуры (конфигурации, конформации) белков: первичная, вторичная, третичная и четвертичная.

Первичная структура белков

Первичная структура белков является простейшей. Имеет вид полипептидной цепи, где аминокислоты связаны между собой прочной пептидной связью. Определяется качественным и количественным составом аминокислот и их последовательностью.

Вторичная структура белков

Вторичная структура образована преимущественно водородными связями, которые образовались между атомами водорода NH-группы одного завитка спирали и кислорода СО-группы другого и направлены вдоль спирали или между параллельными складками молекулы белка.

Белковая молекула частично или целиком скручена в α-спираль или образует β-складчатую структуру. Например, белки кератина образуют α-спираль. Они входят в состав копыт, рогов, волос, перьев, ногтей, когтей. β-складчатую имеют белки, которые входят в состав шелка. Извне спирали остаются аминокислотные радикалы (R-группы).

Водородные связи значительно более слабые, чем ковалентные, но при значительном их количестве образуют довольно прочную структуру.

Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков – миозин, актин, фибриноген, коллаген и т. п.

Третичная структура белка

Третичная структура белка. Эта структура постоянна и своеобразна для каждого белка. Она определяется размером, полярностью R-групп, формой и последовательностью аминокислотных остатков. Полипептидная спираль закручивается и укладывается определенным образом.

Формирование третичной структуры белка приводит к образованию особой конфигурации белка – глобулы (от лат. globulus – шарик). Его образование обуславливается  разными типами нековалентных взаимодействий: гидрофобные, водородные, ионные.

Между остатками аминокислоты цистеина возникают дисульфидные мостики.

Гидрофобные связи – это слабые связи между неполярными боковыми цепями, которые возникают в результате взаимного отталкивания молекул растворителя. При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофильные цепи.

Третичную структуру имеет большинство белков – глобулины, альбумины и т. п.

Четвертичная структура белка

Четвертичная структура белка. Образуется в результате объединения отдельных полипептидных цепей. В совокупности они составляют функциональную единицу. Типы связей разные: гидрофобные, водородные, электростатические, ионные.

Электростатические связи возникают между электроотрицательными и электроположительными радикалами аминокислотных остатков.

Для одних белков характерно глобулярное размещение субъединиц – это глобулярные белки. Глобулярные белки легко растворяются в воде или растворах солей. К глобулярным белкам принадлежит свыше 1000 известных ферментов.

К глобулярным белкам относятся некоторые гормоны, антитела, транспортные белки.

 Например, сложная молекула гемоглобина (белка эритроцита крови) является глобулярным белком и состоит из четырех макромолекул глобинов: двух α-цепей и двух β-цепей, каждая из которых соединена с гемом, содержащим железо.

Для других белков характерно объединение в спиральные структуры – это фибриллярные (от лат. fibrilla – волоконце) белки. Несколько (от 3 до 7) α–спиралей свиваются вместе, подобно волокнам в кабеле. Фибриллярные белки нерастворимы в воде.

Белки делят на простые и сложные.

Простые белки (протеины)

Простые белки (протеины) состоят только из остатков аминокислот. К простым белкам относят глобулины, альбумины, глутелины, проламины, протамины, пистоны. Альбумины (например, альбумин сыворотки крови) растворимы в воде, глобулины (например, антитела) нерастворимы в воде, но растворимы в водных растворах некоторых солей (хлорид натрия и т. п.).

Сложные белки (протеиды)

Сложные белки (протеиды) включают в состав, кроме остатков аминокислот, соединения другой природы, которые называются простетическою группой.

Например, металлопротеиды – это белки, содержащие негеминовое железо или связанные атомами металлов (большинство ферментов), нуклеопротеиды – белки, соединенные с нуклеиновыми кислотами (хромосомы и т. п.), фосфопротеиды –белки, в состав которых входят остатки фосфорной кислоты (белки яичного желтка и т. п.

), гликопротеиды –белки в соединении с углеводами (некоторые гормоны, антитела и т. п.), хромопротеиды – белки, содержащий пигменты (миоглобин и т. п.), липопротеиды – белки, содержащие липиды (входят в состав мембран).

Молекулярный уровеньУровни организации живого

Источник: https://xn—-9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/stroenie-belkov-struktury-belkov-pervichnaya-vtorichnaya-tretichnaya-i-chetvertichnaya-prostye-i-slozhnye-belki/

6.Структуры белка — биохимия

Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей. Такое образование известно под названием тропоколлаген[3]. Один виток спирали α-цепи содержит три аминокислотных остатка. 

Для первичной структуры белка характерно высокое содержание глицина, низкое содержание серосодержащих аминокислот и отсутствие триптофана.

Коллаген существует в нескольких формах. Основная структура всех типов коллагена является схожей.

Тропоколлаген (структурные единицы коллагена) спонтанно объединяются, прикрепляясь друг к другу смещенными на определенное расстояние концами, образуя в межклеточном веществе более крупные структуры. В фибриллярных коллагенах молекулы смещены относительно друг друга. 

Внутри существует ковалентная связь между цепями, а также некоторое непостоянное количество данных связей между самими тропоколагеновыми спиралями, образующими хорошо организованные структуры (например, фибриллы).

Более толстые пучки фибрилл формируются с помощью белков нескольких других классов, включая другие типы коллагенов, гликопротеины, протеогликаны, использующихся для формирования различных типов тканей из разных комбинаций одних и тех же основных белков.

Нерастворимость коллагена была препятствием к изучению мономера коллагена, до того момента как было обнаружено, что возможно извлечь тропоколлаген молодого животного, поскольку он еще не образовал сильных связей с другими субъединицами фибриллы.

Коллагеновая фибрилла — это полукристаллическая структурная единица коллагена. Коллагеновые волокна — это пучки фибрилл.

Фиброин является гетеродимером, образованным двумя белковыми цепями. Его первичная структура состоит из повторяющейся аминокислотной последовательности (Gly-Ser-Gly-Ala-Gly-Ala)n.

В свою очередь, повторяющиеся аминокислотные последовательности образуют антипараллельные складчатые β-слои, связанные водородными связями.

Эта структура обуславливает высокий предел прочности нитей паутин и шелка. Более прочный, чем кевлар, фиброин вдобавок ещё и высоко эластичен.

Эти качества делают его материалом, применяемым в различных областях, включая биомедицину и текстильное производство.

Структуры

Фиброин может образовывать три типа структур, называемых шёлк I, II и III. Шёлк I – натуральная форма фиброина, который выделяется из шёлкоотделительных желез тутового шелкопряда и присутствует в шелке-сырце. Шёлк II — структура фиброиновых молекул в крученой шёлковой пряже, его прочность выше, и он часто используется коммерчески в различных областях.

Шёлк III – недавно открытая структура фиброина, впервые замеченная профессором Региной Валуцци (Regina Valluzzi) с помощниками в Тафтском Уиниверситете. Шёлк III формируется преимущественно в растворах фиброинов на поверхности раздела (то есть границе между водой и воздухом, поверхность раздела вода-нефть и т.д.).

Читайте также:  Полтавская битва 1709 года: кратко и главное о бое, дата и описание сражения, важные моменты и итоги

Исследование шёлка III для лучшего понимания его физической структуры, качеств и состава продолжается.

Кератины — семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину. В основном из кератинов состоят роговые производные эпидермиса кожи — такие структуры, как волосы,ногти, рога носорогов, перья и рамфотека клюва птиц и др.

Согласно новой номенклатуре кератинов[1], в это семейство входят также цитокератины, образующие наиболее прочные элементы внутриклеточного цитоскелета эпителиальных клеток.

Структура белка

По вторичной структуре белка семейство кератинов разделяется на две группы:

  • α-кератины имеют конформацию в виде плотных витков вокруг длинной оси молекулы (α-спираль); эти кератины являются основой волос (включая шерсть), рогов, когтей и копыт млекопитающих.
  • β-кератины, более твёрдые и имеющие форму несколько зигзагообразных полипептидных цепей (т. н. β-листы); эти кератины обнаружены в когтях и чешуе рептилий, в их панцирях ( у черепах), в перьях, клювах и когтях птиц, в иглах дикобразов.

Для первичной структуры α-кератинов характерно большое содержание цистеина и множество дисульфидных связей.

В отличие от α-кератинов поперечные дисульфидные связи между соседними полипептидными цепями у β-кератинов отсутствуют. В полипептидной цепи каждый второй элемент — глицин. Характерно повторение последовательности «GSGAGA».

Для α-кератинов основным структурным компонентом являются цилиндрические микрофибриллы диаметром 75 А, состоящие из спирализованных, скрученных попарно протофибрилл.

Источник: https://www.sites.google.com/site/bio110303/home/struktury-belka

Химическая организация клетки. Органические вещества

ТАБЛИЦА (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Вещество Поступление в клетку Состав Функции
Белки У растений синтезируются на рибосомах из аминокислот, которые образуются в клетках, из NH2 и карбоксильной группы, соединенных с различными радикалами. У животных поступают с пищей, расщепляются до аминокислот, которые идут на синтез собственных белков Биополимеры. Мономерами являются аминокислоты — низко-молекулярные соединения. Заменимые аминокислоты синтезируются в организме, незаменимые поступают с пищей: Макромолекулы белка имеют первичную (цепочка), вторичную (спираль), третичную (глобулы) и четвертичную (агрегаты молекул) структуры Строительная (входит в состав всех мембранных структур); каталитическая (ферменты); регуляторная (гормоны); двигательная (сократительные белки); транспортная (гемоглобин); защитная (антитела); сигнальная (реакция на раздражение); энергетическая (источник энергии); механическая (прочность различных структур)
Белки-ферменты Синтезируются из аминокислот на рибосомах в соответствии с генетическим кодом Биополимеры. Бывают двух типов: однокомпо-нентные, состоящие только из белка, и двухкомпонен-тные, состоящие из белка и небелкового компонента — органического (витамина) и неорганического (металла) Биологические катализаторы специфического характера; образующие в клетках ферментные системы противопо-ложного действия, что обеспечивает регуляцию жизнеде-ятельности: одни участвуют в синтезе органических веществ, другие — в их расщеплении
Жиры (липиды), липоиды У растений синтезируются в каналах эндоплаз-матической сети; у животных поступают с пищей, расщепляются и вновь синтезируются в собственные жиры Соединения глицерина (трехатомного спирта) с высокомоле-кулярными органическими кислотами (жирными). Носят гидрофобный характер. Липоиды — жироподобные вещества, у которых одна молекула жирной кислоты заменена на Н2РО4 Источник энергии. Теплорегуляция. Защита органов. Строительная функция — входят в состав мембран, обеспечивая их полупроницаемость, и матрикса органелл. Компонент витаминов, растительных пигментов. Источник воды для животных организмов
Углеводы У растений синтезируются в хлоропластах в процессе фотосинтеза из СО2 и НзО. У животных поступают с пищей Биополимеры. Мономером является глюкоза. Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза, галактоза. Дисахариды: сахароза, мальтоза. Полисахариды: крахмал, гликоген, клетчатка, хитин Источник энергии. Исходное органическое вещество в цепи питания, строительный материал — целлюлозная клеточная стенка у растений. Рибоза и дезоксирибоза — составные компоненты ДНК, РНК. АТФ

Изорганических соединений в клетке содержатся белки, углеводы, жиры, нуклеиновые кислоты, жироподобные вещества (липоиды) и др. Таким образом, отличия живого от неживого в химическом отношении проявляются уже на молекулярном уровне.

Белки. Из всех органических веществ в клетке ведущая роль принадлежит белкам. Белки — это полимеры, их составными единицами (мономерами) являются аминокислоты.

На долю белков в клетке приходится 50-80% сухой массы.

Молекулярная масса белков огромна; например, у белка яйца-яичного альбумина она составляет 36000, у гемоглобина-65 000, у сократительного белка мышц (актомиозин)- 1500000, в то время как у молекул глюкозы она равна 180.

Любая аминокислота состоит из карбоксила (СООН), аминогруппы (NH2) и радикала (R).

Различаются они только радикалами, которые крайне разнообразны по структуре. Аминогруппа придает аминокислоте щелочные свойства карбоксил — кислотные; этим определяются амфотерные свойства аминокислот. Каждая аминокислота может соединиться с другой посредством пептидных связей (-CO-NH-).

В этом случае от аминогруппы одной аминокислоты отделяется ион H+, а от карбоксила другой радикал ОН с образованием молекулы воды. Соединение, возникающее из двух и большего числа аминокислотных остатков, называется полипептидом. В нем между мономерами существуют самые прочные ковалентные связи.

Таким образом, природный белок состоит из нескольких десятков или сотен аминокислот, структура же белковой молекулы зависит от вида аминокислот, их количества и порядка расположения в полипептидной цепи.

Последовательность аминокислот в полипептидной цепи определяет первичную структуру молекулы белка от которой в свою очередь зависят последующие уровни пространственной организации и биологические свойства белка. Следующий уровень организации белка — вторичная структура.

Она имеет вид спирали. Между изгибами спирали возникают водородные связи, которые слабее ковалентных, но, повторенные многократно, создают довольно прочное сцепление.

Витки спирали могут сворачиваться в клубочки, образуя более сложное разветвление, в котором отдельные звенья спирали соединяются более слабыми бисульфидными связями.

В этих пунктах в радикалах аминокислот располагаются атомы серы, и соединение между ними создает бисульфидную связь: -S-S-. Так возникает третичная структура молекулы белка. Объединяясь в агрегаты, молекулы белка смогут образовывать четвертичную структуру.

Под влиянием термических, химических и других факторов в белке нарушаются бисульфидные и водородные связи. Это приводит к нарушению сложной структуры — денатурации. При этом третичная структура переходит во вторичную и далее — в первичную. Если первичная структура не разрушается, то весь процесс оказывается обратимым, что имеет исключительно важное значение в восстановлении функциональных свойств белковой молекулы после повреждающих воздействий. Белки можно разделить на глобулярные (антитела, гормоны, ферменты) и фибриллярные (коллаген, кератин кожи, эластин).

Биологическая роль белков в клетке и во всех жизненных процессах очень велика. На первом месте стоит их каталитическая функция.

Поскольку многие внутриклеточные вещества в химическом отношении инертны и их концентрация в клетке незначительна, реакции в клетках должны бы протекать очень замедленно. Однако благодаря присутствию в клетке биокатализаторов реакции проходят исключительно быстро.

Все биокатализаторы (они называются ферментами или энзимами) — вещества белковой природы. Каждую химическую реакцию обусловливает свой биокатализатор.

Всевозможных реакций в цитоплазме клетки осуществляется очень, много, столь же много и биокатализаторов, контролирующих ход этих реакций.

Строительная функция белков сводится к их участию в формировании всех клеточных органоидов и мембраны. Следующая функция белка — сигнальная.

Исследования показывают, что факторы внешней и внутренней среды — температурные, химические, механические и другие способны вызвать обратимые изменения структуры, а значит, и свойств белков. Их способность к обратимым, изменениям структуры под влиянием раздражителей лежит в основе важного свойства живого — раздражимости.

Восприятие любого раздражителя связано с изменением пространственной упаковки белковой молекулы.

Сократительная функция белка состоит в том, что все виды двигательных реакций клетки выполняются особыми сократительными белками (актин и миозин в мышцах высших животных, сократительные белки в жгутиках и ресничках простейших и др.). При этом, взаимодействуя с АТФ, белки разрушают ее, а сами укорачиваются, вызывая эффект движения.

Транспортная функция белков выражается в способности специфических белков крови обратимо соединяться с органическими и неорганическими веществами и доставлять их в разные органы, и ткани. Так, гемоглобин соединяется с кислородом и диоксидом углерода. Сывороточный белок альбумин связывает и переносит вещества липидного характера, гормоны и др.

Белки выполняют и защитную функцию. В организме в ответ на проникновение в него чужеродных веществ вырабатываются антитела — особые белки, которые нейтрализуют, обезвреживают чужеродные белки.

Белки могут служить источником энергии. Расщепляясь в клетке до аминокислот и далее до конечных продуктов распада — диоксида углерода, воды и азотосодержащих веществ, они выделяют энергию, необходимую для многих жизненных процессов в клетке.

Углеводы встречаются как в животных, так и в растительных клетках, причем в последних их значительно больше-до 80% сухой массы.

В живых клетках углеводы могут быть представлены простыми сахарами (моносахаридами Cn(H2O)n, например глюкозой, фруктозой, и сложными соединениями (полисахаридами), такими, как крахмал, клетчатка, гликоген.

Глюкоза и фруктоза хорошо растворимы в воде и встречаются в клетках плодов, которым придают сладкий вкус.

По числу атомов углерода простые углеводы делятся на две группы: пентозы (включают 5 атомов углерода), например рибоза, дезоксирибоза (в составе нуклеиновых кислот и АТФ), и гексозы (6 атомов углерода), например галактоза, глюкоза, фруктоза. Молекулы моносахаридов, объединяясь друг с другом, образуют дисахариды например сахарозу (состоит из глюкозы и фруктозы), лактозу (состоит из глюкозы и галактозы). Все они хорошо растворимы в воде. Более сложные полисахариды в воле нерастворимы и сладким вкусом не обладают: например крахмал и клетчатка в растительных клетках, гликоген-в животных клетках. Углеводы участвуют в построении ряда клеточных структур — клеточной стенки растений, а в сложном сочетании с белками входят в состав костей, хрящей, связок, сухожилий Кроме того, углеводы служат источником энергии, которая расходуется на движение клеток, секрецию, синтез белков и любые другие формы деятельности клетки.

Жиры представляют собой соединение трехатомного спирта глицерина с жирными кислотами. Их содержание в клетках составляет 5-15% от сухой массы, а в некоторых клетках-до 90%.

Наряду с жирами в клетках встречаются жироподобные вещества — липоиды, представляющие собой эфиры жирных кислот и спиртов, но не глицерина. Подобно жиру, они нерастворимы в воде и обычно присутствуют в клетке в соединении с белками, образуя с ними комплексы — липопротеиды.

Жиры и жироподобные вещества содержатся в клеточных мембранах и ядре, входят в состав оболочек нервных волокон, регулируют поступление жирорастворимых веществ внутрь клетки и за ее пределы. Жиры служат источником воды, которая выделяется при их окислении.

Они плохо проводят тепло и могут поэтому выполнять функцию теплоизоляции. Некоторые липоиды входят в состав гормонов половых желез и надпочечников, провитамина D, желтка яйцеклеток и др. Жиры — источник энергии.

липоиды

Нуклеиновые кислоты — это высокомолекулярные органические соединения, имеющие первостепенное биологическое значение. Впервые они были обнаружены в ядре клеток (в конце XIX в.), отсюда и получили соответствующее название (нуклеус — ядро). Нуклеиновые кислоты хранят и передают наследственную информацию. Подробнее см. «Нуклеиновые кислоты«

Источник: https://www.examen.ru/add/manual/school-subjects/natural-sciences/biology/uchenie-o-kletke/ximicheskaya-organizacziya-kletki-organicheskie-veshhestva/

Ссылка на основную публикацию
Adblock
detector