Органические вещества входящие в состав клетки — какие основные соединения

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые(имея в своём составе карбоксильную и аминогруппы)обладают свойствами кислоты и основания (амфотерны).

Органические вещества входящие в состав клетки — какие основные соединения

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Органические вещества входящие в состав клетки — какие основные соединения

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего (20) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Органические вещества входящие в состав клетки — какие основные соединения

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

Органические вещества входящие в состав клетки — какие основные соединения

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.

Органические вещества входящие в состав клетки — какие основные соединения

  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).

Органические вещества входящие в состав клетки — какие основные соединения

  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).

Органические вещества входящие в состав клетки — какие основные соединения

  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).

Органические вещества входящие в состав клетки — какие основные соединения

  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.

Органические вещества входящие в состав клетки — какие основные соединения

  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении (1) г белка до конечных продуктов выделяется (17,6) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Органические вещества входящие в состав клетки — какие основные соединения

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/khimicheskii-sostav-kletki-16040/re-e49d7227-24e6-4088-ac25-5ba28bc78f36

Химическая организация клетки. Неорганические вещества. Органические вещества

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы — кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,— калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,— микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.

Неорганические вещества

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках — до 95%, в старых — 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе.

Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде.

Такие вещества называют гидрофильными (от греч. «гидро» — вода, «филее» — люблю). Это многие минеральные соли, белки, углеводы и др.

Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» — страх) — жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К+, Na+, Са2+, Mg+. Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова.

В живой клетке концентрация К высокая, Na+ — низкая, а в плазме крови, наоборот, высокая концентрация Na+ и низкая К+. Это обусловлено избирательной проницаемостью мембран.

Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений.

Недостаток отдельных элементов — Fe, Р, Mg, Со, Zn — блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО42-, Н2РO4—, Cl —, HCO3—

Органические вещества

Органические вещества в комплексе образуют около 20—30% состава клетки.

Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые — моносахариды (от греч. «монос» — один) и сложные — полисахариды (от греч. «поли» — много).

Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода.

Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке).

Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов.

Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза).

Последняя состоит из 150—200 молекул глюкозы.

Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).

Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке.

При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества.

Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой.

Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии.

Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки — наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров — 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Органические вещества входящие в состав клетки — какие основные соединения

Органические вещества входящие в состав клетки — какие основные соединения

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (— NH2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами.

Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера — белка.

При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура — полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S — S (эс — эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты — цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.
Читайте также:  Животные степи россии: список хищников и травоядных, исчезающие и редкие виды

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией. Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов.

При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде первичной структуры — полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна

Белки — это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов — ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Органические вещества входящие в состав клетки — какие основные соединения

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок — активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.).

Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки — антитела — выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» — ядро) впервые обнаружены в ядре. Они бывают двух типов — дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей.

Ширина двойной спирали 2 нм1, длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы).

ДНК — полимер, мономерами которой являются нуклеотиды — соединения, состоящие из молекулы фосфорной кислоты, углевода — дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Органические вещества входящие в состав клетки — какие основные соединения

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

Органические вещества входящие в состав клетки — какие основные соединения

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г — только Ц.

Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» — дополнение) друг другу.

Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц — три.

Удвоение молекулы ДНК — ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом.

Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь.

В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

Органические вещества входящие в состав клетки — какие основные соединенияОрганические вещества входящие в состав клетки — какие основные соединения

РНК — полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК — аденин, гуанин и цитозин — соответствуют таковым ДНК, а четвертое — иное. Вместо тимина в РНК присутствует урацил.

Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов.

Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ — аденозинтрифосфорная кислота — важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод — рибоза и три молекулы фосфорной кислоты. АТФ — неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в АДФ (аденозин-дифосфорную кислоту).

Эта реакция сопровождается выделением 40 кДж энергии, поэтому фосфорнокислородную связь называют макроэнергетической связью и обозначают знаком [бесконечность]. В АТФ имеются две такие связи. Если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорную кислоту).

АТФ играет центральную роль в превращении энергии в клетке.

Источник: https://kaz-ekzams.ru/biologiya/uchebnaya-literatura-po-biologii/biologiya-spravochnye-materialy/obshhaya-biologiya/690-ximicheskaya-organizaciya-kletki-neorganicheskie-veshhestva-organicheskie-veshhestva.html

Органические вещества клетки

Существует 4 класса органических веществ, входящих в состав клеток: белки, жиры, углеводы и нуклеиновые кислоты.

Биополимеры

Биологические полимеры – высокомолекулярные органические соединения, молекулы которых состоят из большого числа повторяющихся звеньев – мономеров. К биополимерам относятся белки (состоят из аминокислот), нуклеиновые кислоты (состоят из нуклеотидов), полисахариды и их производные (состоят из моносахаридов).

По форме биополимеров могут быть линейными (белки, нуклеиновые кислоты, целлюлоза) или ветвящимися (гликоген, крахмал).

Свойства биополимеров

1. Кооперативность

Тесная взаимосвязь всех функциональных групп, то есть взаимодействие одних групп полимера изменяет характер взаимодействия других его групп. Например, связывание кислорода белком эритроцитов крови – гемоглобином.

2. Способность образовывать интерполимерные комплексы

Такие комплексы могут возникать как между отдельными частями молекулы, так и между разными молекулами. Благодаря образованию комплексов осуществляются биосинтез белков, нуклеиновых кислот, регуляция обмена веществ и другие биологические процессы.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Углеводы

Углеводы — органические вещества, в состав которых входят углерод, кислород и водород. Образуются в процессе фотосинтеза из воды и углекислого газа.

Различают — моносахариды (состоят из одной молекулы) (глюкоза, рибоза и т.д.

), дисахариды — соединение двух молекул (сахароза, мальтоза) и полисахариды — в их состав входит много молекул сахара (крахмал, гликоген, клетчатка, пектин, инулин, хитин). 

  • Функции углеводов
  • 1. Входят в состав многих органических веществ (рибоза — в состав РНК, АТФ, ФАД, НАД, НАДФ, дезоксирибоза — в состав ДНК)
  • 2. Глюкоза — является источником энергии (окисляется при дыхании)
  • 3. Многие углеводы являются запасными веществами — крахмал у растений, гликоген — у грибов и животных
  • 4. Входят в состав многих компонентов клеток и тканей (гликокаликс, гепарин, кликопротеины, пектины, полисахариды, гемицеллюлоза, хитин, муреин, тейхоевые кислоты)
  • 5. Защитная — в составе гликокаликса участвует в процессе клеточного распознавания, входят в состав иммуноглобулинов, входят в состав камеди (выделяется при повреждении стволов) и в состав клеточной стенки многих организмов
  • Белки
  • Белки — это органические вещества-полимеры, мономерами которых являются аминокислоты (гемоглобин, альбумин, коллаген, эластин и многие другие).
  • Белки имеют 4 структуры
  • Органические вещества входящие в состав клетки — какие основные соединения
  • Первичная — линейная последовательность аминокислот, соединенная в полипептиднуй цепь
  • Вторичная — спираль, состоящая из двух цепей, соединенных водородными связями
  • Третичная — глобула или фибриллярная структура (уложенные слои или суперскрученная спираль). Ионные, водородные, ковалентные (дисульфидные мостики), гидрофобные взаимодействия между составными частями
  • Четвертичная — несколько глобул или микрофибриллы, соединенные силами межмолекулярного притяжения
  • Бывают: собственно белки и ферменты.
  • Ферменты — биологические катализаторы, не только ускоряют, но и осуществляют большиснтво реакций в живых организмах.
  • Ферменты – это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Химические реакции в живой клетке протекают при умеренной температуре, нормальном давлении и нейтральной среде. В таких условиях реакции синтеза или распада веществ протекали бы очень медленно, если бы не подвергались воздействию ферментов.

Ферменты ускоряют реакцию без изменения ее общего результата за счет снижения энергии активации. Это означает, что в их присутствии требуется значительно меньше энергии для придания реакционной способности молекулами, которые вступают в реакцию.

Ферменты отличаются от химических катализаторов высокой степенью специфичности, то есть фермент катализирует только одну реакцию или действует только на один тип связи.

Скорость ферментативных реакций зависит от многих факторов – природы и концентрации фермента и субстрата, температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Классификация ферментов

1. Оксидоредуктазы

Окислительно-восстановительные реакции: перенос атомов водорода (Н) и кислорода (О) или электронов от одного вещества к другому, при этом окисляется первый и восстанавливается второй. Участвуют во всех процессах биологического окисления.

Перенос группы атомов (метильной, ацильной, фосфатной или аминогруппы) от одного вещества к другому. Например, перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу под действием фототрансфераз.

Реакции расщепления сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химической связи (гидролиз). Например, амилаза (гидролизует крахмал), липаза (расщепляет жиры), трипсин (расщепляет белки) и др.

Негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи С-С, C-N, C-O, C-S. Например, декарбоксилаза отщепляет карбоксильную группу.

Внутримолекулярные перестройки, превращение одного изомера в другой (изомеризация).

Реакции соединения двух молекул с образованием новых связей с использованием энергии АТФ. Например, фермент валин-т-РНК-синтеза, под действием которого образуется комплекс валин-т-РНК.

Читайте также:  Приставки в русском языке; изменяемые приставки, их правописание, таблица иноязычных приставок с их значением

Органические вещества входящие в состав клетки — какие основные соединения

На рисунке представлен механизм действия фермента. В молекуле каждого фермента имеется активный центр – это один или более участков, в которых происходит катализ за счет тесного контакта между молекулами фермента и специфического вещества (субстрата).

Активным центром выступает или функциональная группа (например, ОН-группа), или отдельная аминокислота. Активный центр может формироваться связанными с ферментом ионами металлов, витаминами и другими соединениями небелковой природы – коферментами или кофакторами.

Форма и химическое строение активного центра таковы, что с ним могут связываться только определенные субстраты в силу их идеального соответствия (комплементарности) друг другу.

Молекула фермента изменяет глобулярную форму молекулы субстрата. Молекула субстрата, присоединяясь к ферменту, тоже в определенных пределах изменяет свою конфигурацию для увеличения реакционности функциональных групп центра.

На заключительном этапе химической реакции фермент-субстратный комплекс распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр может принимать новые молекулы субстрата.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Функции белков

1. Ферментативная — ускоряют, а в большинстве случаев осуществляют биохимические реакции в организме

2. Структурная — входят в состав всех мембран, являются компонентом соединительной ткани (костей, хрящей, сухожилий, кожи, волос, ногтей), входят в состав слизистых секретов (мукопротеины). Из белков состоят капсиды вирусов. Входят в состав каружного скелета насекомых.

3. Двигательная — из белков состоят микротрубочки (тубулин), двигательный аппарат жгутиков, актин и миозин — сократительные белки мышц.

  1. 4. Транспортная — транспорт через мембрану и внутри клетки, а также белки крови (гемоглобин переносит кислород, гемоцианин переносит кислород в крови беспозвоночных, сывороточный альбумин переносит жирные кислоты, глобулины переносят ионы металлов и гормоны)
  2. 5. Защитная — белки иммунитета (интерфероны), белки крови (предотвращают кровопотерю), антиоксиданты (гасят активные формы кислорода)
  3. 6. Рецепторная — белки гликокаликса (отвечают за клеточную совместимость), светочувствительные ферменты сетчатки глаза, фитохром у растений (реагирует на изменение длины светового дня)
  4. 7. Запасающая — белок-ферритин запасает железо в печени, селезенке, миоглобин запасает кислород в мышцах позвоночных
  5. 8. Питательная — белки — источники аминокислот
  6. 9. Регуляторная — многие гормоны являются белками (инсулин, соматотропин, пролактин, глюкагон)
  7. 10. Антибиотическая — многие антибиотики (противомикробные препараты) являются белками (грамицидин S, актиномицин)
  8. 11. Токсическая — многие токсины (опасные для живых организмов вещества) являются белками — ботулинический токсин, столбнячный, холерный, токсины грибов и пчел
  9. Нуклеиновые кислоты: ДНК и РНК

В 1953 г. английские ученые Дж. Уотсон и Ф. Крик предложили модель пространственной струк- туры ДНК. Они показали, что ДНК состоит из двух полинуклеотидных цепей, спирально закрученных одна вокруг другой.

Двойная спираль стабилизирована водородными свя- зями между азотистыми основаниями разных цепей так, что против аденина одной цепи всегда стоит ти- мин другой, а гуанина — цитозин. Многократное повторение этих связей придает большую устойчивость двойной спирали ДНК.

При опреде- ленных условиях (действие кислот, щелочей, нагревание и т. п.) происходит денатурация ДНК — разрыв водородных связей между компле- ментарными азотистыми основани- ями.

Денатурирован­ная ДНК может восстановить двуспи­ральное строение благодаря установлению водородных связей между комплементарными нуклеотидами — этот процесс называется ренатурацией.

  • Строение ДНК:
  •  Органические вещества входящие в состав клетки — какие основные соединения
  • ДНК составляют 4 типа азотистых оснований : А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).
  • Нуклеотиды соединяются по принципу комплементарности: А=Т, ГΞЦ
  • Функции ДНК: 
  • 1. Хранение генетической информации
  • 2. Репликация ДНК
  • 3. Синтез РНК
  • Строение РНК:
  • Органические вещества входящие в состав клетки — какие основные соединения
  • РНК бывает: 
  • 1. Рибосомальной (входит в состав рибосом)
  • 2. Транспортной (приносит аминокислоты к рибосомам во время синтеза белка)
  • 3. Информационной (передает информацию о первичной структуре белка на рибосомы)

Принцип комплементарности – избирательное соединение нуклеотидов; свойство, которое лежит в основе образования новых молекул ДНК на базе исходной.

Против аденина одной цепи всегда располагается тимин другой цепи, против гуанина – цитозин и наоборот.

Таким образом, пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными (пространственное взаимное соответствие), или комплементарными.

Образование полимера РНК происходит так же, как и у ДНК. Молекула РНК синтезируется на одной из цепочек ДНК-матрицы по принципу комплементарности. Например, против Г молекулы ДНК становится Ц молекулы РНК, против Ц молекулы ДНК – Г молекулы РНК, против Т молекулы ДНК – А молекулы РНК, а против А молекулы ДНК – У молекулы РНК (вместо тимина РНК несет урацил).

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

  1. Правило Чаргаффа: у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гауниловых – числу цитидиловых.
  2. Первое правило: А/Т = Г/Ц = 1.
  3. Второе правило: А + Г = Ц + Т.
  4. Третье правило: А + Ц = Г + Т.

Чаргафф не смог полностью объяснить свои правила, основанные на результатах тщательной аналитической работы с различными образцами ДНК. Однако уже в 1953 г. Это сделали молодые ученые Д. Уотсон и Ф. Крик. Они создали структурную модель молекулы ДНК.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Липиды

Липиды — жироподобные органические вещества, нерастворимые в воде, но растворимые в неполярных органических растворителях (бензоле, бензине и т.д.).

Состоят из глицерина и жирных кислот, при этом глицериновые головки являются гидрофильными, а углеводородные хвосты — гидрофобными. Таким образом, образуется в мембране билипидный слой, через который диффундирует вода и другие вещества.

  • Строение липидов: 
  • Органические вещества входящие в состав клетки — какие основные соединения
  • Функции липидов:
  • 1. Энергетическая — при окислении липидов выделяется много энергии
  • 2. Резервная — жиры являются запасным веществом и в ходе окисления жиров выделяется вода, которая очень важны, например, для жителей пустыни
  • 3. Структурная — из фосфолипидов состоят мембраны всех живых организмов, гликолипиды участвуют в межклеточных контактах в тканях животных, сфинголипиды обеспечивают электрическую изоляцию аксона, создавая условия для быстрого прохождения импульса, пчелы из воска строят соты
  • 4. Защитная — термоизоляция и амортизация, воски являются водоотталкивающими веществами у растений, гликолипиды участвуют в распознавании токсинов
  • 5. Регуляторная — некоторые гормоны — липиды (тестостерон, прогестерон, кортизон), существуют жирорастворимые витамины (A, D, E, K), гибберелины — регуляторы роста растений
  • Разнообразие липидов
  • Фосфолипиды — содержат остаток фосфорной кислоты, входят в состав клеточных мембран.

Гликолипиды — соединения липидов с углеводами. Являются составной частью тканей мозга и нервных волокон.

  1. Липопротеиды — комплексные соединения разнообразных белков с жирами.
  2. Стероиды — важные компоненты половых гормонов, витамина Д.
  3. Воска — выполняют защитную функцию: у млекопитающих — смазывают кожу и волосы, у птиц — придают перьям водоотталкивающие свойства, у растений — предотвращают чрезмерное испарение воды.
  4. АТФ

 Аденозинтрифосфорная кислота (АТФ) — нуклеотид, в состав которого входит азотистое основание аденин, углевод рибоза и три остатка фосфорной кислоты.

Молекула АТФ является универсальным химическим аккумулятором энергии в клетках. Остатки фосфорной кислоты связаны макроэргичными связями.

Когда от АТФ отщепляется один остаток фосфорной кислоты, образуется АДФ — аденозиндифосфорная кислота и выделяется 40 кДж энергии

Источник: http://cleverpenguin.ru/organicheskiye-veshchestva-kletki

Органические вещества в составе клетки, биологические молекулы (Таблица)

Справочная таблица содержит органические вещества в составе клетки (или биологические молекулы), такие как углеводы, нуклеиновые кислоты  и нуклеотиды, липиды, аминокислоты и белки, витамины

Биологические молекулы — в основе их строения лежит способность атомов углерода образовывать ковалентные связи, обычно с атомами углерода, кислорода, водорода или азота. Молекулы могут иметь форму длинных цепей или же формировать различные кольцевые структуры.

Органические вещества клетки Функции в клетках Структура и свойства
Углеводы
  • —  являются основным источником энергии для организма
  • —  компонент соединительных тканей
  • —  защитная функция (слизь, гепарин)
  • —  запасные питательные вещества (полисахариды)
  1. Эти органические вещества клетки обычно состоят только из С, Н и О
  2. Эмпирическая формула — СnН2nОn
  3. Для определения простейших углеводов (редуцирующих сахаров) обычно используется нагревание с реактивом Бенедикта
  4. Многие углеводы растворимы в воде
  5. Делятся на три основных класса: моносахариды, олигосахариды и полисахариды.

Органические вещества входящие в состав клетки — какие основные соединения

Нуклеиновые кислоты  и нуклеотиды
  • —  синтез белка
  • —  хранение наследственной информации клетки
  • —  запас и накопление энергии в клетках
  1. Нуклеиновые кислоты — биополимеры, мономерами которых являются нуклеотиды.
  2. Содержат С, Н, О, N и Р
  3. Фосфатная группа дает КИСЛУЮ РЕАКЦИЮ
  4. После гидролиза сахар пентоза дает позитивную РЕАКЦИЮ БЕНЕДИКТА

Органические вещества входящие в состав клетки — какие основные соединения

Липиды
  • —  источник энергии
  • —  компоненты клеточных мембран
  • —  защитная функция клеток
  • —  транспортная функция
  • —  роль запасных веществ
Липиды — это различные соединения, отличающихся своей гидрофобностью. Большая часть липидов это жиры.

  1. Обычно не растворяются в воде, но растворимы в органических растворителях
  2. Обычно состоят только из С, Н и О, при этом содержание О меньше, чем в углеводах
  3. Определяют, как правило, с помощью физической реакции — эмульсионной пробы

Органические вещества входящие в состав клетки — какие основные соединения

Аминокислоты и белки
  • —  структурная функция
  • —  каталитическая (ферменты)
  • —  транспортная функция (гемоглобин)
  • —  защитная функция (антитела)
  • —  энергетическая функция
  1. Аминокислоты —  это соединения, в составе которых есть карбоксильная группа и аминогруппа(—NH2).
  2. Биологические молекулы белков состоят из С, Н, О, N и иногда S
  3. Эти органические вещества обычно растворимы в воде
  4. Белки дают положительную биуретовую реакцию

Органические вещества входящие в состав клетки — какие основные соединения

Коферменты Основная функция —  энергетическая!
  • Коферменты — это молекулы не белковой природы, соединяются с белками (апоферментами) и играют роль активного центра.
  • Коферменты используются для переноса функциональных групп между ферментами, которые катализируют химические реакции.
  • К ним относят витамины, АТФ, Ацетил-КоА.
  • АТФ (аденозинтрифосфат) центральный кофермент, универсальный источник энергии клеток.

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Общая биология / Левитин М. Г. — 2005.

Источник: https://infotables.ru/biologiya/75-obshchaya-biologiya/1029-veshchestva-v-sostave-kletki

Органические вещества, входящие в состав клетки. Биология 9 класс Мамонтов



Вопрос 1. Назовите основные группы органических веществ, входящих в состав клетки.

Органические соединения составляют в среднем 20–30 % массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул – гормоны, пигменты, аминокислоты, простые сахара, нуклеотиды и т. д. Разные типы клеток содержат разные количества органических соединений.

Вопрос 2. Из каких простых органических соединений состоят белки?

Белки – это высокомолекулярные полимерные соединения, мономером которых служат аминокислоты.

Вопрос 3. Составьте схему «Функции белков в клетке».

Функции белков в клетке многообразны. Одна из важнейших — строительная функция: белки входят в состав всех клеточных мембран и органоидов клетки, а также внеклеточных структур.

Для обеспечения жизнедеятельности клетки исключительно важное значение имеет каталитическая, или. ферментативная, роль белков.

Биологические катализаторы, или ферменты, — это вещества белковой природы, ускоряющие химические реакции в десятки и сотни тысяч раз.

Ферментам свойственны некоторые черты, отличающие их от катализаторов неорганической природы. Во-первых, один фермент катализирует только одну реакцию или один тип реакций, т. е. биологический катализ специфичен.

Во-вторых, активность ферментов ограничена довольно узкими температурными рамками (35— 45 °С), за пределами которых их активность снижается или исчезает. В-третьих, ферменты активны при физиологических значениях рН, т. е. в слабощелочной среде.

Еще одно важное отличие ферментов от неорганических катализаторов: биологический катализ протекает при нормальном атмосферном давлении.

Все это определяет ту важную роль, которую ферменты играют в живом организме. Практически все химические реакции в клетке протекают с участием ферментов. Двигательная функция живых организмов обеспечивается специальными сократительными белками.

Эти белки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у многоклеточных животных и пр.

Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела.

При поступлении в организм чужеродных белков или микроорганизмов белые кровяные тельца лейкоциты— образуют особые белки — антитела. Они связывают и обезвреживают не свойственные организму вещества — это защитная функция белков. Белки служат также источником энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Вопрос 4. Какие химические соединения называют углеводами?

Углеводы, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название).

Вопрос 5. Назовите основные функции углеводов. Какие клетки и почему наиболее богаты углеводами?

Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток; сложный полисахарид хитин — главный структурный компонент наружного скелета членистоногих.

Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается 17,6 кДж энергии.

Крахмал у растений и гликоген у животных, откладываясь в клетках, служит энергетическим резервом.

Вопрос 6. Вспомните из предыдущих курсов биологии, какую функцию выполняет глюкоза в организме человека. Какое количество глюкозы в крови является нормой? Чем опасно резкое снижение концентрации глюкозы в плазме крови?

Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др.

Уровень глюкозы в крови составляет 3,3—5,5 ммоль/л и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью.

При снижении уровня глюкозы в крови до 2,2—1,7 ммоль/л (40— 30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома».

Введение в кровь глюкозы быстро устраняет данные расстройства.

Вопрос 7. Объясните, почему термины «жиры» и «липиды» не являются синонимами.

Липиды — разнородная группа углеводород-содержащих органических веществ. Сложные природные и синтетические соединения, объединяемых общим свойством — хорошей растворимостью в неполярных органических растворителях (таких, как эфир и хлороформ) и очень малой растворимостью в воде. Липидам отводится важная роль в формировании биологических мембран, других сторонах жизнедеятельности организмов.

Не следует путать понятия, считая липиды синонимом слова жир, жиры (триглицериды) — лишь один из важных подклассов липидов.

Вопрос 8. Какие функции выполняют липиды? В каких клетках и тканях их особенно много?

Основная функция жиров – служить энергетическим резервуаром. Калорийность липидов выше энергетической ценности углеводов. В ходе расщепления 1 г жиров до СO2 и Н2O освобождается 38,9 кДж энергии. Содержание жира в клетке колеблется в пределах 5–15 % от массы сухого вещества. В клетках жировой ткани количество жира возрастает до 90 %.

В организме животных, впадающих в спячку, накапливается избыток жира, у позвоночных животных жир откладывается ещё и под кожей – в так называемой подкожной клетчатке, где он служит для теплоизоляции. Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для обитателей пустынь.

Так, жир, которым заполнен горб верблюда, служит в первую очередь не источником энергии (как часто ошибочно полагают), а источником воды.

Очень важную роль для живых организмов играют фосфолипиды, являющиеся компонентами мембран, т. е. выполняющие строительную функцию.

Из липидов можно отметить также воск, который используется у растений и животных в качестве водоотталкивающего покрытия. Из воска пчёлы строят соты. Широко представлены в животном и растительном мире стероиды – это желчные кислоты и их соли, половые гормоны, витамин D, холестерол, гормоны коры надпочечников и т. д. Они выполняют ряд важных биохимических и физиологических функций.

Вопрос 9. Откуда в организме берётся метаболическая вода?

Метаболическая, или эндогенная, вода образуется в организме в результате большого количества биохимических превращений. Наибольшее ее количество образуется при окислении углеводов и жиров.

Например, при расщеплении 100 г жира выделяется не только значительное количество энергии, но и 134 мл эндогенной воды. Такое свойство жиров позволяет многим животным (амфибиям, рептилиям и млекопитающим) в неблагоприятный сезон года впадать в спячку и не вести активный образ жизни.

Это же качество жира делает возможным трансокеанские перелеты некоторых бабочек (махаон).

Вопрос 10. Что такое нуклеиновые кислоты? Какие типы нуклеиновых кислот вы знаете? Чем отличаются РНК и ДНК?

Нуклеиновые кислоты – это полимеры, построенные из огромного числа мономерных единиц, называемых нуклеотидами.

Различают два типа нуклеиновых кислот. Дезоксирибонуклеиновая кислота (ДНК) – двуцепочечный полимер с очень большой молекулярной массой. В одну молекулу могут входить 108 и более нуклеотидов. ДНК несёт в себе закодированную информацию о последовательности аминокислот в белках, синтезируемых клеткой, и обладает способностью к воспроизведению.

Рибонуклеиновая кислота (РНК), в отличие от ДНК, бывает в большинстве случаев одноцепочечной. Существует несколько видов РНК: информационные (иРНК), транспортные (тРНК) и рибосомальные (рРНК). Они различаются по структуре, величине молекул, расположению в клетке и выполняемым функциям.

Вопрос 11. Сравните химический состав живых организмов и тел неживой природы. Какие выводы можно сделать на основе этого сравнения?

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи. Все это говори об общности и единстве живой и неживом природы.

Вопрос 12. Какие особенности строения атома углерода обусловливают его ключевую роль в формировании молекул органических веществ?

Большинство окружающих нас веществ — органические соединения.

Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 млн.

таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.

Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами.

Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы.

Большое разнообразие органических соединений связано также с существованием явления изомерии.

Источник: https://resheba.me/gdz/biologija/9-klass/mamontov/3

Органические вещества клетки

Органические вещества — это сложные углеродсодержащие соединения, имеющие крайне разнообразную структуру и свойства. Это могут быть как низко-, так и высокомолекулярные соединения, линейные или циклические, гидрофильные или гидрофобные, количество которых во много раз превосходит количество известных неорганических соединений.

Ранее считалось, что органические вещества синтезируются только живыми организмами. В действительности, все органические вещества, которые встречаются в природе, имеют отношение к живым организмам. Они либо входят в их состав, либо являются продуктами их жизнедеятельности.

Однако сейчас с помощью химического синтеза получено огромное количество органических веществ, намного превышающее число известных природных соединений.

Большинство органических веществ образовано небольшим количеством элементов: в них помимо углерода входит водород, многие также содержат кислород и азот. Эти четыре элемента могут легко образовывать ковалентные связи благодаря спариванию электронов на внешних орбиталях атомов.

В предыдущих постах уже было сказано, что атому углерода для полного заполнения внешней орбитали не хватает четырех электронов, т.е. он может образовывать четыре ковалентные связи (по числу общих электронных пар).

У атома азота  недостает трех электронов, а у атомов кислорода и водорода — двух и одного соответственно. Разнообразие органических веществ значительно увеличивается за счет того, что кислород способен образовывать и двойные связи, а углерод и азот не только двойные, но и тройные.

Это также придает органическим веществам новые свойства. Также в состав многих органических соединений входят сера и фосфор.

Органические  вещества в живых организмах очень разнообразны и по своей структуре, и по выполняемым функциям. На этих этом основывается их классификация, хотя часто этот принцип не соблюдается так строго.

Например, в группу витаминов объединяют вещества, имеющие различную структуру и химические свойства, однако у всех витаминов высокая биологическая активность, и они необходимы животным или человеку в микроколичествах.

Кроме низкомолекулярных органических веществ, а именно, органических кислот, аминокислот, сахара, нуклеотидов, липидов и т.п., в состав живых организмов входят и высокомолекулярные вещества — биополимеры.

Полимеры — вещества, молекулы которых состоят из большого количества повторяющихся единиц или «мономерных звеньев» (мономеров). Благодаря ковалентным связям мономеры соединяются между собой, образуя длинные неразветвленные или разветвленные цепи.

Полимер, состоящий из одинаковых мономеров, называют гомополимером. Например, полисахариды состоят из молекул глюкозы. К ним относятся целлюлоза, крахмал, гликоген. Если же в составе полимера есть несколько различных «строительных блоков», он называется гетерополимером.

В качестве примера гетерополимеров можно привести белки, построенные из 20-ти различных аминокислот, или нуклеиновые кислоты, состоящие из  нуклеотидов 4-х разных типов. Гетерополимеры могут быть регулярными и нерегулярными.

Белки и нуклеиновые кислоты, к примеру, относятся к нерегулярным гетерополимерам, поскольку последовательности аминокислот в разных белках или нуклеотидов в ДНК и РНК не имеют какой-то строгой периодичности.

Основные классы органических молекул организма

Класс Процент массы тела Главные атомы Подкласс Субъединица
Углеводы 1 C, H, O Моносахариды (сахара), Полисахариды Моносахариды
Липиды 15 C, H Триацилглицериды,
Фосфолипиды,
Стероиды
3 жирные кислоты + глицерин 2 жирные кислоты + глицерин + фосфат + слабозаряженная азотсодержащая молекула спирта
Белки 17 C, H, O, N Пептиды, Белки Аминокислоты Аминокислоты
Нуклеиновые кислоты 2 C, H, O, N ДНК,РНК Нуклеотиды, содержащие основания аденин, гуанин, тимин, цитозин, сахар, дезоксирибозу и фосфатНуклеотиды, содержащие основания аденин, гуанин, урацил или цитозин, сахар, рибозу и фосфат

Перейти к оглавлению.

Источник: https://www.studentguru.ru/organic-in-cells.html

Ссылка на основную публикацию